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Abstract. Recent technological advancements in satellite imagery have increased the production
of remotely sensed images. Therefore, developing efficient methods for annotating these images
has gained popularity. Most of the current state-of-the-art methods are based on supervised
machine learning techniques. We propose a method called semisupervised multi-label annotizer
(SS-MLA) that adapts vector-quantized temporal associative memory to annotate remotely sensed
images. One of the advantages of SS-MLA over the supervised methods is that it extracts features
not only from the given sample but also from similar samples that are previously seen without
using an explicit attention mechanism. Thus SS-MLA enhances the learning efficiency of the train-
ing process. We conduct extensive performance comparisons with five different methods in the
literature over four datasets. The comparison results indicate the success of the proposed method
over the existing ones: SS-MLA generates the best results in 7 out of 11 comparisons. © 2021
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.15.036509]
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1 Introduction

From the technological advances in satellite and airborne imagery techniques, lately, the acquis-
ition rate of remotely sensed images has been increasing significantly. As a result, the image
datasets are available for researchers to serve various application areas, such as military surveil-
lance and tracking the growth of urban locations.1–4 One way to utilize these datasets in
applications is to categorize the data either by labeling/tagging or clustering them. Annotation
(assigning labels to images) or clustering can be made manually by a group of people inspecting
each image. However, this is a very tedious and cumbersome task. Therefore, various automated
methods have been proposed to classify these images. Some of them annotate an image with
only one label (multi-class classification),5,6 whereas others assign multiple labels (multi-label
classification) to each image.7–11 In multi-class and multi-label classification, there have been
significant challenges and important differences.12

Most of the multi-label classification algorithms rely on supervised methods. A supervised
learning method requires both training samples and their true labels. Convolutional neural net-
works, recursive neural networks, and other neural networks supported with various attention
mechanisms13 are all supervised methods and have gained popularity in this research field
recently.14–17

The performance of the supervised classification methods might be improved with the help of
unsupervised methods. Although we have not found solid examples of unsupervised methods
used in the field of multi-label annotation of remotely sensed images, some studies successfully
perform multi-label annotation of regular images.18,19 The results of these studies18,19 are prom-
ising. In addition, in one of our early studies,20 we employed the unsupervised self-organizing
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maps (SOM) method to refine the existing labels of given images. In that work, we observed
an improvement over the common supervised approaches. That observation encourages us to
develop a semisupervised method that integrates supervised and unsupervised methods as
presented below.

In this paper, we propose a semisupervised method for multi-label classification of remotely
sensed images. The proposed method is based on an unsupervised neural modeling technique
called vector-quantized temporal associative memory (VQTAM).21 Essentially, VQTAM ap-
proximates non-linear discrete-time difference systems more effectively than Kohonen’s SOM.22

The effectiveness of VQTAM comes from the temporal memory that employs the previous time-
step values of the system. VQTAM utilizes both previous time-step values and the current time-
step values to approximate the future values of the given function. We exploit this property of
VQTAM to store the image labels instead of previous time-steps. We also modify VQTAM such
that it produces the occurrence probabilities of labels for a given image. To the best of our knowl-
edge, this is the first time that VQTAM is utilized for multi-label classification.

Briefly, we modify VQTAM so that it can learn the label and image relationships as follows.
Each node in the VQTAM model is influenced by the surrounding nodes during training. The
neighbor nodes are also approximations of several similar images and their respected labels.
Therefore, the current node can construct features that otherwise cannot be learned. Because
of this automated interaction between nodes to create features, we consider the proposed method
a semisupervised one. We believe that the proposed semisupervised method would be a successful
alternative to the presented supervised methods thanks to the increased learning efficiency.

The reminder of this paper is organized as follows. Section 2 introduces the semisupervised
method for the multi-label classification of remotely sensed images. Section 3 presents the
experiment design, datasets, evaluation metrics, and results of the proposed method. Section 4
emphasizes the significance of the results. Section 5 provides a quick review of the work done
and concludes this paper with suggestions for future improvements.

2 Proposed Method

In this section, we present the details of the proposed method for the multi-label annotation of
remotely sensed images. In brief, the proposed method consists of two modules as depicted in
Fig. 2. The first module is a deep neural network model (a pretrained ResNet50 model23), and
the second one is a modified version of the SOM model (VQTAM21).

In training, the first module extracts image features from the given image using a supervised
learning approach. Then we concatenate these extracted image features with the multi-hot
encoded bag of words (BoW) of the corresponding image’s annotations. After that, we pass the
concatenated feature vectors to the VQTAM model that clusters these concatenated feature vec-
tors applying the SOM’s unsupervised learning approach. Thus, we have clusters of similar
concatenated features vectors produced from training data. Since these two modules apply two
different learning approaches (supervised and unsupervised), we call the proposed method the
semisupervised multi-label annotizer (SS-MLA).

In inference, the SS-MLA method first generates an image feature vector for the given image
using the first module. Since we aim at predicting multi-labels, we cannot create a BoW vector
for the given image. Therefore, we build a BoW vector that has the same shape as the BoW
vector used in training but contains all zero values. Then this BoW vector is concatenated to
the image feature vector and fed into the modified VQTAM model as shown in Fig. 2. The
modified VQTAM model generates and returns a new BoW vector that we can use to predict
the multi-label annotation of the given image. In brief, during training, the VQTAMmodel learns
the relationship among image features and annotations in an unsupervised way. On the other
hand, during inference, the VQTAM model delivers a multi-hot encoded BoW vector as the
reply for the queried image feature. We use this vector as the prediction of the labels for the
given image.

Below, we first introduce the SOM algorithm as well as the VQTAM technique and explain
the adaptation of VQTAM into the proposed solution. Then we define the SS-MLA method,
the hyper-parameter tuning procedure, and the training process.
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2.1 Background

Since SOM is the foundation of VQTAM, we first present the basics of SOM. Then we explain
VQTAM by elaborating the differences between SOM and VQTAM.

2.1.1 Self-organizing map

Kohonen proposed the original SOM algorithm in 1982. The SOM algorithm compresses the
non-linear high-dimensional relationships between the data samples to a much smaller dimen-
sional vector space, i.e., two-dimensional. This property enables SOM to be used as a visuali-
zation or an abstraction tool in complex tasks such as signal processing, control, machine
learning, and communication.22

The foundation of SOM’s learning procedure is vector quantization (VQ). In essence, VQ is a
signal approximation or a lossy data compression technique depending on the context. VQ gen-
erally constructs an approximation of the distribution of the data samples x ∈ Rn in terms of
finite codebook vectors, mi ∈ Rn, i ¼ 1;2; : : : ; k. Finding an approximation for a data point x
means finding the closest codebook vector mc to that point. In that case, the index c is found as

EQ-TARGET;temp:intralink-;e001;116;536c ¼ arg min
i
fkx −mikg: (1)

An optimal selection of the codebook vector should minimize the average expected square
of the quantization error, which is defined as

EQ-TARGET;temp:intralink-;e002;116;475E ¼
Z

kx −mck2pðxÞdx; (2)

where the integral is calculated for the n-dimensional space and pðxÞ is the probability density
function of x. The detailed derivation of the VQ algorithm can be found in Ref. 22.

One downside of VQ is that it cannot map the data in an ordered manner. In contrast, the
original SOM algorithm is a non-linear, ordered, smooth mapping of high-dimensional input
data onto the elements of a low-dimensional array. Despite the lack of an ordered mapping fea-
ture, VQ helps to create this type of mapping between input–output pairs. SOM contains para-
metric real vectors mi ¼ ½μi1; μi2: : : ; μin�T ∈ Rn; each one is called a model and is associated
with each of the input vectors x ¼ ½ξ1; ξ2; : : : ; ξn�T ∈ Rn. There are multiple ways to initialize
the model vectors, e.g., random. Then finding the best modelmc for a given input vector x is very
similar to the VQ and is defined as

EQ-TARGET;temp:intralink-;e003;116;310c ¼ arg min
i
fdðx;miÞg; (3)

where dðx;miÞ is a general distance metric between x and mi.
SOM first assigns each input sample to a model mi. In other words, each model has a list of

assigned input samples. The assignment is done by comparing each input vector x with all mi

and assigning the input vector to the most similar mi considering the general distance metric
according to Eq. (3). The nodes (models) that are topographically close to a certain geometric
distance will activate each other to create a smoothing effect during the learning. Thus the next
value of mi with respect to time is calculated as

EQ-TARGET;temp:intralink-;e004;116;191miðtþ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ −miðtÞ�; (4)

where t ¼ 0;1; 2; : : : is an integer. hciðtÞ is called the neighborhood function. The function
hciðtÞ → 0 when t → ∞ is necessary for the algorithm to converge. In the literature, a smooth
neighborhood function, a kind of Gaussian function, is widely utilized. In that case, the smooth
neighborhood kernel is written as

EQ-TARGET;temp:intralink-;e005;116;112hciðtÞ ¼ αðtÞ · exp
�krc − rk2i

2σ2ðtÞ
�
; (5)
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where αðtÞ is the learning rate; rc ∈ R2 and ri ∈ R2 are the location vectors of node c and i in
the lattice, respectively; and σðtÞ is the width of the kernel. In other words, the radius of the set
NcðtÞ is the neighborhood set around the node c as shown in Fig. 1.

2.1.2 Vector-quantized temporal associative memory

VQTAM21 is an unsupervised neural modeling technique that uses SOM to approximate non-
linear dynamic mappings. SOM alone can only learn static input–output mappings. By adding a
short-term memory, SOM can remember the past information about the system input and output
vectors. Although this is a very useful feature for time series analysis, it can also be twisted to
convert VQTAM to a semisupervised regressor. Instead of using the short-term memory to store
the information from the previous time step, one can use it to store dependent variables as in any
of the supervised learning algorithms.

To enable the approximation of dynamic mappings for SOM, the input vector xðtÞ is divided
into two parts. The first part is denoted by xinðtÞ, and the second part is denoted by xoutðtÞ.
Following this change, the weight vectors of each node i also have been divided as min

i ðtÞ and
mout

i ðtÞ. The inputs and weight vectors are summarized as follows:

EQ-TARGET;temp:intralink-;e006;116;282xðtÞ ¼
�

xinðtÞ
xoutðtÞ

�
and miðtÞ ¼

�
min

i ðtÞ
mout

i ðtÞ
�
: (6)

VQTAM only uses the part corresponding to xinðtÞ during training to find the winning
neurons. Thus updating c in Eq. (3) as c� is necessary:

EQ-TARGET;temp:intralink-;e007;116;212c � ðtÞ ¼ arg min
i
fdðxinðtÞ; min

i ðtÞÞg. (7)

In contrast with the training, it uses both xinðtÞ and xoutðtÞ while updating the weights. Hence,
we update Eq. (4) as follows:

EQ-TARGET;temp:intralink-;e008;116;150min
i ðtþ 1Þ ¼ min

i ðtÞ þ hc�iðtÞ½xinðtÞ −min
i ðtÞ�; (8)

EQ-TARGET;temp:intralink-;e009;116;106mout
i ðtþ 1Þ ¼ mout

i ðtÞ þ hc�iðtÞ½xoutðtÞ −mout
i ðtÞ�: (9)

With this, we conclude the brief introduction of the fundamental algorithms. In our method,
we use VQTAM to find the corresponding clusters of the query image from their image features
vectors. VQTAM finds the cluster of the incoming query and returns it. After that, we isolate

Fig. 1 A 4 × 4 grid for an example rectangular SOM lattice.

Üstünkök and Karakaya: SS-MLA: a semisupervised method for multi-label annotation. . .

Journal of Applied Remote Sensing 036509-4 Jul–Sep 2021 • Vol. 15(3)



the labels part from the returned cluster and report it as the multi-labels of the query image.
In the inference, we form our query vectors by omitting the BoW vector part as in real-world
applications. In the next section, we define the multi-label annotation problem of remotely
sensed images. Then we introduce the proposed SS-MLA method.

2.2 Multi-Label Image Annotation

In multi-label image annotation, multiple labels are assigned to the corresponding images by
detecting the important features and relating them to the respected labels. Assume that a dataset
of images are denoted as X ¼ fX1;X2; : : : ;Xng, where n is the number of images and a dic-
tionary of labels is denoted as L ¼ fl1; l2; : : : ; lkg, where k is the number of unique labels
jLj ¼ k. If we call the subset L ∈ 2L as the set of relevant labels of Xi, then L \ L indicates
the set of irrelevant labels. L can be denoted with a binary vector Y ¼ fy1; y2; : : : ; ykg, where
yi ¼ 1 if li ∈ L. We denote all such possible combinations of Y with Y ¼ f0;1gk. The aim of the
SS-MLA method is to learn a relation F∶X → Y from the dataset D ¼ fðXi; YiÞj1 ≤ i ≤ n;
Xi ∈ X; Yi ∈ Yg. Hence, we can call Zi ¼ FðXiÞ ∈ f0;1gk the predicted label set.

To create BoW vectors (shown as the pink box in Fig. 3), we opt out using the multi-hot
encoding method. In this method, we first create a dictionary from all labels. Then according to
the size of the dictionary, we decide the size of the BoW vector. The index of the labels in
the dictionary determines the location (index) of the labels in the BoW vector. For the labels
of an image, we mark their existence in the corresponding BoW vector by setting the label index
values as 1. All other indices of the corresponding BoW vector have 0 values. Thus using the
BoW vector, we can encode the labels in the image as a vector consisting of 0 and 1 values.

2.3 Semisupervised Multi-Label Annotizer

As demonstrated in Fig. 2, the SS-MLA method consists of three structurally different modules:
ResNet50, BoW, and VQTAM. Training the ResNet50 and VQTAM modules and using them in
inference are very different from each other. Therefore, we design a three-phase approach for
integrating these modules. First, we explain the training process and leave the inference process
for later.

Fig. 2 A high-level view of the SS-MLA method.

Fig. 3 The vector concatenation operation that occurs in the SS-MLA method.
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2.3.1 Training process

Execution of training is done in three phases. In the first phase, we apply fine-tuning to the
ResNet50 model, pretrained with the ImageNet dataset.24 Therefore, we drop the top dense
layers of the ResNet50 model. Then we attach three layers instead of the dropped top dense
layers. The first layer is a global average pooling layer.25 This layer reduces the output vector
size of the ResNet50 from 7 × 7 × 2048 to 2048 scalars only. After that, a dropout layer26 follows
the previous global average pooling layer with a network weight dropping probability of 0.5.
Finally, a dense sigmoid layer is placed to perform the multi-label classification. The number of
units in this layer is determined by the number of unique labels in the dataset. We train this
network with the previously defined training images for 10 epochs with a learning rate of 0.0005.

In the second phase, we transform each training image with the ResNet50 network to
construct the xin ∈ Rn×2048. Next, using the training data, we generate multi-hot encoded BoW
vectors for corresponding multi-labels of images and concatenate them xout ∈ f0;1gn×k to
the xin to create the x ∈ Rn×ð2048þkÞ in the training time.

The above two phases apply supervised learning methods to generate image and label fea-
tures. However, in the last phase, we design an unsupervised learning approach by adapting the
VQTAMmodel as a clustering method. We feed the concatenated feature vectors to the modified
VQTAM model with x for e number of epochs. We choose the learning rate as α, the neighbor-
hood function hciðtÞ as the Gaussian kernel presented in Eq. (5), the topology as a 32 × 32 rec-
tangular grid, the width of Nc as 1.0, and the activation distance as the L2 distance metric. Thus
the modified VQTAM model builds an SOM model considering the image and label feature
vectors.

2.3.2 Impact of the grid size

The grid size of an SOM (VQTAM) model is one of its most important hyper-parameters since it
indicates how many clusters can be formed inside the map. To decide which grid size best suits
our purpose, we try different grid dimensions. We start from an 8 × 8 grid size and increment it to
16 × 16, 32 × 32, and 64 × 64 in each iteration. Each time, we measure the F1-score as well as
the training time. We report the results measured by utilizing the UCM multi-label dataset in
Fig. 4. As can be seen from this figure, the 32 × 32 grid size gives us the best F1-score in a
reasonable amount of time. Therefore, we build all of our models with the 32 × 32 grid size.

To achieve an efficient training process, we set up a grid search to determine the optimum
hyper-parameter values of VQTAM for the rest of the hyper-parameters. These parameters are
the number of epochs (e), α and σ, which is the width of Nc. For the number of epochs, we search
the range from 1000 to 25,000 epochs. For α, we search the range from 0.1 to 1.0. Finally, for σ,
we search the range from 1.0 to 5.0. The optimum hyper-parameter values are found to be differ-
ent for each dataset. To validate the training, we randomly select a node from the lattice after
training with the UCM multi-label dataset and check for the clustered images. The clustered
images are all similar images and they are shown in Fig. 5.

Fig. 4 The effect of the grid size measured on the UCM multi-label dataset.
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2.3.3 Inference process

In the inference process, we take the image Xi ∈ fkjk ∈ Z224×224×3; 0 ≤ k ≤ 255g and transform
it into a vector xini ∈ R2048 using the pretrained, fine-tuned ResNet50 architecture given in Fig. 2.
Then we create a multi-hot encoded BoW vector xouti ∈ f0;1gk consisting of only zeros and
append it to the previously constructed vector to prepare the query input vector xi ∈ R2048þk

for VQTAM. As seen at the bottom of Fig. 2, VQTAM consumes the xi, finds the winning node
inside the lattice by looking for the closest mj to the xi according to Eq. (7), and returns its mout

j ,
where j is limited with the number of nodes in the lattice.

mout
j is the probability value of the target labels. To convert it to a multi-hot encoded vector,

we adapt a brute force search to find the optimum threshold value τ ∈ ð0;1Þ. While in the training
process (we discuss the details later), we search the space with steps of 0.01 and pick the one
that gives us the highest F1-score. After getting the optimum τ, we threshold the whole vector
to get the multi-hot encoded labels of the given image Xi.

In the following section, we present the evaluation results of the proposed method on four
Łdifferent datasets along with the comparisons made with five methods.

3 Experiment and Result

In this section, we first present a summary of the datasets that we use in this work. Then we
introduce the evaluation metrics to compare the methods. Finally, we compare the classification
performances of five other methods, given in Sec. 1, with the proposed SS-MLA method. We
present the reported results of the related work considering four different datasets, yielding
11 comparisons in total. To achieve a fair comparison, the example-based metrics (F1-score,
F2-score, precision, and recall) are used. While interpreting the performance of the methods,
we only consider the F1-score, which is the most popular metric throughout the related literature.
The highest F1-score is printed with a bold font in all of the tables.

3.1 Datasets

There are various datasets to be used in the multi-label classification of remotely sensed images.
We gather a collection of accessible datasets that are employed by the related work of this study.

Fig. 5 Clustered images on the VQTAM node with the coordinates (13, 18) after training. All have
the same labels of grass, sand, trees, and water.

Üstünkök and Karakaya: SS-MLA: a semisupervised method for multi-label annotation. . .

Journal of Applied Remote Sensing 036509-7 Jul–Sep 2021 • Vol. 15(3)



We analyze them by defining metrics such as distinct label set (DLS), proportion of distinct label
set (PDLS), label cardinality (LC), and label density (LD).27 The variability of these statistical
properties may uncover the distinctive characteristics of models applied on different datasets.
The details of the metrics are given below.

DLS is the number of all unique subsets of 2L, which is assigned to at least one sample.
It is defined as follows:

EQ-TARGET;temp:intralink-;e010;116;663DLSðDÞ ¼ jfYij∃ Xi∶ðXi; YiÞ ∈ Dgj: (10)

PDLS is the normalized version of DL by the number of samples in the dataset. It is defined
as follows:

EQ-TARGET;temp:intralink-;e011;116;607PDLSðDÞ ¼ DLSðDÞ
jDj : (11)

LC is the average number of labels per sample. It is defined as follows:

EQ-TARGET;temp:intralink-;e012;116;549LCðDÞ ¼ 1

n

Xn
i¼1

jYji: (12)

LD is the normalized version of LC with the number of labels. It is defined as follows:

EQ-TARGET;temp:intralink-;e013;116;488LDðDÞ ¼ LCðDÞ
k

: (13)

All the defined statistic metrics are calculated for each dataset and presented in Table 1.
The details of each dataset are given below.

3.1.1 AID multi-label dataset

The creators of the AID multi-label dataset15 describe the dataset as the multi-class version of the
widely used AID dataset. The original AID dataset was constructed from 10,000 high-resolution
images taken from Google Earth from various locations worldwide. It contains 30 scene labels.
In the AID multi-label dataset, there are 3000 images with a size of 600 × 600 each. The number
of scene labels is reduced to 17 by manually labeling each image. The LC is 5.1523. Hence,
it yields an LD of 0.3031, which is almost the same as the DFC15 multi-label and Ankara
datasets.

3.1.2 UCM multi-label dataset

Chaudhuri et al.28 created a multi-label version of the UCMERCED archive29 called the UCM
multi-label dataset. The UCM multi-label dataset contains 2100 images, each of size 256 × 256.
Each image is manually relabeled from a dictionary of 17 labels. Statistical properties of this
dataset are somewhat similar to the AID multi-label dataset, although DLS and LC properties are
a little low when compared.

Table 1 Remotely sensed multi-label image classification datasets.

# Dataset name Image size #Images
#Distinct
labels DLS PDLS LC LD

1 AID multi-label 600 × 600 3000 17 297 0.0990 5.1523 0.3031

2 UCM multi-label 256 × 256 2100 17 202 0.0962 3.3348 0.1962

3 DFC15 multi-label 600 × 600 3342 8 65 0.0194 2.7953 0.3494

4 Ankara dataset 63 × 63 216 29 127 0.5880 9.1204 0.3145
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3.1.3 DFC15 multi-label dataset

The DFC15 multi-label dataset has 3342 images, each of size 600 × 600. The dataset was built
from another dataset called DFC15.30 The DFC15 multi-label dataset has the least DLS and
number of labels among the datasets, which also affects the PDLS, LC, and LD values. These
properties may simplify the classification tasks on this dataset, especially the DLS statistic.

3.1.4 Ankara dataset

The Ankara dataset is the smallest dataset that we run in our experiments. It contains 216 hyper-
spectral images, each of size 63 × 63. There are 29 labels and 127 DLS in this dataset, which
increase the PDLS and LC values of this dataset quite a bit. A high PDLS value means a low
number of samples for each image, and each image has ∼9 labels. These statistics show that the
Ankara dataset is very different from the other datasets.

3.2 Evaluation Metrics

In multi-label classification, the predictions can be fully correct, partially correct, or fully incor-
rect. While evaluating the results, this partialness should be handled differently from the binary
classification and multi-class classification. Otherwise, the alternative might be assuming the
partially correct ones as incorrect. This way, also known as exact match ratio, obviously cannot
differentiate between partially correct ones and incorrect ones.27

Oneway to handle this is to calculate the average difference between actual labels and predicted
labels for each sample and average the results for all samples. This averaging technique is known
as example-based averaging. The metrics used for binary and multi-class classification (precision,
recall, F1-score, and F2-score) can also be used in multi-label classification by calculating the
average as example-based. The example-based versions of these metrics are explained below.

The precision (P) is the ratio of correctly predicted labels to the predicted labels, averaged
over all samples. It is defined as follows:

EQ-TARGET;temp:intralink-;e014;116;391P ¼ 1

n

Xn
i¼1

jYi ∩ Zij
jZij

; (14)

where n is the number of samples in the test set.
The recall (R) is the ratio of correctly predicted labels to the actual labels, averaged over all

samples. It is defined as follows:

EQ-TARGET;temp:intralink-;e015;116;308R ¼ 1

n

Xn
i¼1

jYi ∩ Zij
jYij

; (15)

where n is the number of samples in the test set.
The harmonic mean of precision and recall is called F1-score. If recall is more important than

precision depending on the problem, a generalized version of F1-score can be used. This version
of F1-score (F1) is called F-beta (Fβ) score. In the following equations, one can see the def-
initions of F1-score and F-beta score, respectively,

EQ-TARGET;temp:intralink-;e016;116;201F1 ¼
1

n

Xn
i¼1

2jYi ∩ Zij
jYij þ jZij

; (16)

EQ-TARGET;temp:intralink-;e017;116;140Fβ ¼
1

n

Xn
i¼1

�
ð1þ β2Þ jYi ∩ Zij

β2jYij þ jZij
�
: (17)

3.3 Experiment Design

We design an experiment setup to measure the performance of SS-MLA. In this setup, each
dataset has been resampled 10 times randomly. Every resampling is repeated twice, except for
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the Ankara dataset, for two possible training, validation, and test splits (either 70% to 10% to
20% or 80% to 10% to 10%, respectively). For a fair comparison, data split ratios are decided
according to the compared study. Training, validation, and test splits are created using the same
random seed within each resampling. After splitting the training and test datasets, we train newly
created instances of SS-MLA on the training data for each training set split as explained in
Sec. 2.3.1. Each model is evaluated on the test set of the respected dataset.

We report the mean of the example-based precision, recall, F1-score, and F2-score along
with the 95% confidence interval for every 10 experiments for different splits of the same dataset
yielding 7 different results; 2 for AID multi-label, 2 for UCM multi-label, 2 for DFC15 multi-
label, and 1 for Ankara. The results are presented in the following section.

3.4 Result and Discussion

Table 2 shows the results obtained from the models using Ankara dataset. We compare the
observed performance of SS-MLA with the reported results of the method developed by Zhu
et al.14 One can observe that SS-MLA (F1-score of 82.39%) surpasses the technique developed
by Zhu et al. (F1-score of 76.60%) by 5.79%.

Table 3 shows the evaluation metric values of the second and third comparisons. In this
comparison set, we used the DFC15 multi-label dataset. In this table, we create two comparisons;
one with GRN-SNDL-BCE17 and the other with CA-ResNet-BiLSTM.8 We conduct each com-
parison by considering the train–test split ratio of the compared study. In the first split group,
GRN-SNDL-BCE17 (F1-score of 95.80%) succeeded above our method (F1-score of 94.92%)
by only 0.88%. In the second split group, SS-MLA achieved better results than CA-ResNet-
BiLSTM8 by 11.55%. In the end, we succeed in one out of two comparisons in this dataset.

Table 4 presents the evaluation metric values of the fourth, fifth, and sixth comparisons. We
utilize the AID multi-label dataset to be able to measure the quality of the produced results. We
compare SS-MLA with GRN-SNDL-BCE,17 Zhu et al.14 and AL-RN-ResNet.15 As seen at the
table, SS-MLA is surpassed by GRN-SNDL-BCE with only 1.25% of F1-score in the first split
group. For the remaining comparisons, we outperform both of them with F1-score differences of
2.39% and 1.16% for Zhu et al.14 and AL-RN-ResNet,15 respectively. Conclusively, the SS-MLA
framework produces better F1-scores than two out of three methods in comparison.

Table 2 Comparison of SS-MLA with the literature on the Ankara dataset.

Method
name

Results of published methods Results of SS-MLA

Testing
methodP R F 1 F 2 P R F 1 F 2

Zhu et al.14 81.22 82.12 76.60 — 85.30�
1.81

82.92�
1.75

82.39�
1.09

82.30�
1.31

Random
splita

a80% train, 10% test, and 10% validation.

Table 3 Comparison of SS-MLA with the literature on the DFC15 multi-label dataset.

Method name

Results of published methods Results of SS-MLA

Testing
methodP R F 1 F 2 P R F 1 F 2

GRN-SNDL-BCE17 96.53 95.95 95.80 95.78 95.70�
0.39

95.31�
0.33

94.92�
0.25

95.01�
0.27

Random
splita

CA-ResNet-BiLSTM8 91.93 79.12 83.65 80.61 96.34�
0.29

95.18�
0.56

95.20�
0.29

95.06�
0.45

Random
splitb

a70% train, 20% test, and 10% validation.
b80% train, 10% test, and 10% validation.

Üstünkök and Karakaya: SS-MLA: a semisupervised method for multi-label annotation. . .

Journal of Applied Remote Sensing 036509-10 Jul–Sep 2021 • Vol. 15(3)



Table 5 shows the evaluation results of the related work for the UCM multi-label dataset.
We compare SS-MLA with GRN-SNDL-BCE,17 Zhu et al.,14 AL-RN-ResNet,15 CA-ResNet-
BiLSTM,8 and LR-ResNet.7 SS-MLA is barely outperformed by two of the previous studies
by 1.76% and 1.02%. On the other hand, SS-MLA outperforms the rest by 2.84%, 8.13%, and
4.3% F1-scores, respectively. When we query all of the test images on VQTAM and randomly
select one of the nodes (15, 0), we observe that the clustered images are very similar to each other
as shown in Fig. 6. In addition to that, all of their labels are the same with the correct labels.
Of course, this is not the case for all of the nodes. However, this example is a positive indicator
that VQTAM successfully learns and clusters unseen images as well. As a summary, SS-MLA
achieves better results in three comparisons out of five for this dataset.

Table 4 Comparison of SS-MLA with the literature on the AID multi-label dataset.

Method name

Results of published methods Results of SS-MLA

Testing
methodP R F 1 F 2 P R F 1 F 2

GRN-SNDL-BCE17 92.79 91.08 90.95 90.82 91.36�
0.48

90.48�
0.63

89.70�
0.16

89.87�
0.42

Random
splita

Zhu et al.14 89.72 88.41 87.49 — 91.21�
0.61

91.02�
0.70

89.88�
0.38

90.26�
0.53

Random
splitb

AL-RN-ResNet15 91.00 88.95 88.72 88.54

a70% train, 20% test, and 10% validation.
b80% train, 10% test, and 10% validation.

Table 5 Comparison of SS-MLA with the literature on the UCM multi-label dataset.

Method name

Results of published methods Results of SS-MLA

Testing
methodP R F 1 F 2 P R F 1 F 2

GRN-SNDL-BCE17 91.98 92.83 91.31 91.92 89.23�
0.78

92.15�
0.87

89.55�
0.56

90.78�
0.68

Random
splita

Zhu et al.14 91.75 91.65 90.62 — 89.37�
0.86

92.23�
0.87

89.60�
0.51

90.83�
0.64

Random
splitb

AL-RN-ResNet15 88.81 87.07 86.76 86.67

CA-ResNet-BiLSTM8 77.94 89.02 81.47 85.27

LR-ResNet7 87.10 85.80 85.30 —

a70% train, 20% test, and 10% validation.
b80% train, 10% test, and 10% validation.

Fig. 6 All of the unseen test images are clustered into the node (15, 0). They all have the labels
bare-soil and chaparral. This example is taken from the experiments run on the UCM multi-label
dataset.
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Considering the experiments overall, SS-MLA successfully generates better results than
seven out of eleven comparisons. In the next section, we elaborate on the results. While refining
the ideas, we explain the relations between different approaches and the datasets used in the
experiments.

4 Discussions

SS-MLA can attain competitive performances compared to the considered supervised methods
in the literature. In Table 6, we summarize the overall results. In addition to the dataset names,
we include the PDLS and LC columns to visualize the effect of those values on the other methods
and SS-MLA. The #methods column is the total number of methods (including SS-MLA) that
performed tests on the respected dataset. The final column is the rank of SS-MLA among the
other methods. Here it can be inferred that SS-MLA is more successful than the majority of the
supervised methods that we compare.

The results of the experiments support that an influential factor in the results is the character-
istics of a dataset. In our experiments, we use four different datasets. Two of them—AID and
UCM multi-label—have similar characteristics. Conversely, the Ankara dataset and DFC15
multi-label have different characteristics both from each other and from the AID and UCM
multi-label datasets. The most varying characteristics of the datasets are given in Table 6.

The first observation is when the dataset has a low number of images—i.e., the Ankara data-
set with a high LC and a high DLS; SS-MLA reliably achieves acceptable results while the other
methods cannot. This finding may be the result of the clustering operation performed in the
training phase of VQTAM. Unfortunately, we cannot compare SS-MLA with other methods
since those studies did not test their methods on the Ankara dataset except for the method pro-
posed by Zhu et al.14 On the other hand, the method of Zhu et al.14 was tested on two other
datasets and obtained better scores. Therefore, it might support our claim. At this point, further
examination is needed in future studies to dispel doubts.

Another observation is that the DFC15 multi-label dataset has a very low number of DLS
with 65 sets. When this number is proportional to the number of images, one can get a PDLS
of 0.0194, which is lower than all of the other datasets. SS-MLA is the second-best method in
this dataset by a difference of 0.88%. At the same time, it has an 11.55% higher F1-score than
the third-best method.

These results indicate that a semisupervised method such as SS-MLA can be applied suc-
cessfully to the multi-label classification of remotely sensed images instead of a supervised
method. According to the results, small datasets have a less negative effect on the classification
accuracy of semisupervised methods than the supervised and sophisticated ones.

5 Conclusion

It is obvious that the production speed of remotely sensed images has increased and continues to
increase. These images must be labeled and classified to be used properly in digital environ-
ments. This job is very tedious for a person to do. For this reason, many multi-label classifiers
have been developed. Many of these classifiers work with supervised learning. The accuracy of

Table 6 Summary of the results.

Dataset #Methods Rank of SS-MLA

Ankara dataset 2 1

DFC15 multi-label 3 2

AID multi-label 4 2

UCM multi-label 6 3
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the methods that perform supervised learning can be improved by methods that perform unsu-
pervised learning. For this reason, we have proposed a method called SS-MLA that performs
both supervised and unsupervised learning in this study. Since this method uses both learning
systems, we put it in the category of methods that do semisupervised learning. As a semi-
supervised method, SS-MLA can achieve more successful results than seven out of eleven com-
parisons in total, which shows that SS-MLA can be as successful as other compared supervised
methods.

As a future study, we plan to utilize SS-MLA to work on regular images other than remotely
sensed images. In addition, we will also consider adding an attention layer to discover the rela-
tion between labels explicitly and feed this information to the VQTAM alongside the implicit
label relation information that is discovered by the VQTAM itself.
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