
A Distributed and Measurement-based Framework Against Free
Riding in Peer-to-Peer Networks

Murat Karakaya, Ibrahim Korpeoglu, Ozgur Ulusoy
Department of Computer Engineering

Bilkent University
06800 Ankara, Turkey

{muratk,korpe,oulusoy}@cs.bilkent.edu.tr

Abstract

Peer-to-peer networks have attracted a significant
amount of interest as a popular and successful alterna-
tive to traditional client-server networks for resource
sharing and content distribution. However, the exis-
tence of high degrees of free riding may be an impor-
tant threat against P2P networks. In this paper 1, we
propose a distributed and measurement-based method
to reduce the degree of free riding in P2P networks.
We primarily focus on developing schemes to locate
free riders and on determining policies that can be used
to take actions against them. We propose a model in
which each peer monitors its neighboring peers, makes
decisions if they exhibit any kind of free-riding, and
takes appropriate actions if required. We specify three
types of free riding and their symptoms observable from
the activities of the neighboring peers. We employ sim-
ple formulas to determine if a peer exhibits any kind of
free riding. The counter actions to be applied to the
free riders are defined. We combine the mechanisms
proposed to detect free riders and to take appropriate
actions in an ECA rule and a state diagram.

1 Introduction

Peer-to-peer (P2P) networks have attracted a sig-
nificant amount of interest both in the Internet com-
munity and in the academic world as a popular and
successful alternative to traditional client-server net-
works for resource sharing and content distribution.
Although there are different architectural designs and
applications for P2P file sharing, in nearly all P2P sys-
tems files are stored at peers, searched through the
P2P network mechanisms, and exchanged directly be-
tween peers using the underlying network mechanisms.
In an ideal case, a file that is downloaded by a peer
is automatically opened for sharing with other peers.
However, peers can, and frequently do, turn off this

1This work is supported in part by The Scientific and Re-
search Council of Turkey (TUBITAK), Grant Number: EEEAG-
103E014

property and stop sharing a downloaded file to econo-
mize on their own resources such as bandwidth. There-
fore, the primary property of P2P systems, the implicit
or explicit functional cooperation and resource contri-
bution of peers, may fail and lead to a situation called
free riding.

As a P2P concept, free riding means exploiting P2P
network resources (through searching, downloading ob-
jects, or using services) without contributing to the
P2P network at desirable levels. Researchers have ob-
served the existence of high degrees of free riding in
P2P networks and they suggest that free riding may
be an important threat against the existence and effi-
cient operation of P2P networks [2].

There may be various reasons and motivations be-
hind free riding. For example, peers with a Network
Address Translation (NAT) address may act as a free
rider. Bandwidth limitation would be another cause.
Another reason would be the peers’ concern of shar-
ing “bad” or “illegal” data on their own computers.
Some peers may concern about security if they share
something.

Free riding may cause several negative side effects
on P2P networks. In a free riding environment, a small
number of peers will serve for all other peers. There-
fore, many download requests will be directed towards
these peers which may lead to scalability problems [7].
Renewal of content or presenting interesting content
may decrease in time, thus the number of shared files
may become limited or may grow very slowly. Fault-
tolerance property of P2P networks may be adversely
affected due to the fact that a very small portion of the
peers provides most of the content2. This also leads
to a client-server like paradigm [8, 10] and decreases
P2P network advantages. Quality of search process
may degrade due to increasing number of free riders in
the search horizon. As the peers age in the network,
they begin not to find interesting files and may leave
the system for good with all the files and resources
that they have shared earlier [7, 4]. Moreover, a large
number of free riders and their queries will generate a
great amount of P2P network traffic, which may lead

21% of the peers provides 37% of the content [2].

to degradation of P2P services. Furthermore, under-
lying available network capacity and resources will be
decreased by free riders, which will cause extra delay
and congestion to non-P2P traffic.

In this paper, we propose two mechanisms to cope
with free riding. The first mechanism primarily fo-
cuses on locating and detecting free riders, whereas
the second one deals with taking actions against them.
We propose a model in which each peer monitors its
neighbors, makes decisions, and take actions accord-
ingly. As the first step of our work, we propose several
design criteria which should be met by any P2P system
aiming to prevent free riding. Then, we specify three
free riding types and their symptoms observable from
the activites of neighboring peers. We present simple
methods and formulas to determine if a peer exhibits
any kind of free riding activity. The counter actions
which will be applied against free riders are also speci-
fied. We than integrate tother the hints that suggest a
peer to be free rider and the counter-actions that can
be applied to such a peer using a finite state diagram
that shows the possible states and the transitions be-
tween them. We also represent the transitions using an
ECA rule that enables automatic execution of conter-
actions upon updates and depending on the current
conditions. We identify three possible counter-actions
that can be applied against a peer that is exhibiting
free-riding behavior.

The organization of the paper is as follows. Sec-
tion 2 briefly describes the related work. In Section 3,
following the discussion of the design criteria and per-
formance metrics, the mechanisms for locating free rid-
ers and taking actions against them are described. In
the last part of this section, integration of the proposed
mechanisms in the form of a finite state machine and
an ECA rule is presented. Section 4 discusses the pos-
sible attacks against the proposed mechanisms by free
riders. Finally, the conclusions are presented in sec-
tion 5.

2 Related Work

User traffic on Gnutella network is extensively an-
alyzed in [2] and it is observed that 70% of peers do
not share any file at all. Furthermore, 63% of the peers
who share some files do not respond to any queries. An-
other interesting observation is that 25% of the peers
provide 99% of the whole content in the network.

In a more recent work, Saroui et. al. confirm that
there is a large amount of free riding in Gnutella net-
work as well as in Napster [10]. Another interesting
observation is that 7% of the peers together provide
more files than all of the other remaining peers.

In [7], Ramaswamy and Liu concentrate on how to
prevent free riding. They propose to calculate a utility
function for each peer in order to estimate its useful-
ness to all community. According to the result of the
function, P2P network will permit a peer to search and
download a file or just reject its request. The function

is based on two parameters; the total size of the files
downloaded, and total size of the files uploaded by the
peer. The difference of these two values determines the
utility of the user to the system. If the user requests a
file to download with a size less than the utility value,
then it is permitted to download. Otherwise, it is re-
fused. There are two ways to increase the utility value
for a peer: either the peer can upload new files, or the
peer can wait for some time for a bonus utility value.
When a peer downloads a file, its utility is decreased
by the amount of the size of the downloaded file.

With the proposed method, a free rider can not
download a file from the system if its utility value
is lower than the size of the requested file. However,
there can be some ways to walk around the utility val-
ues. For example, a user can share some small files
with fake names resembling popular file names. Other
users can download these files and in this way the peer
can get utility values for them. Moreover, the pro-
posed method depends on accurate information about
the peers which is provided by the peers themselves. A
P2P network depending on such a protocol can be mis-
reported and cheated by writing some malicious client
programs.

In a recent work [11], Vishnumurthy et.al. suggest
using a single scalar value, called Karma, to evaluate a
peer’s utility to a system like in [7]. Each peer has
an account consisting of Karma. When a peer up-
loads a file to a requesting peer, it gets some amount of
Karma from the requesting peer. On the other hand,
if the peer downloads a file, it gives some amount of
its Karma to the peer serving the file. The account
of a peer is replicated by a group of peers, called the
bank-set, in order to ensure Karma against loose and
tampering. The transfer of Karma between peers is
executed through bank-set of each peer. The main dif-
ference from the work in [7] is that the utility value of
a peer is not stored at the peer itself but at some other
peers.

However, to make the scheme work, a group of peers
must be known to store Karma value. Whenever a
peer’s Karma changes, a predefined number of these
peers should be reachable. Therefore, the identification
of the peers should be known and be permanent. How-
ever, unstructured P2P networks do not support per-
manent and reliable identification mechanisms. Thus,
the prototype of the proposed scheme was implemented
on top of Pastry, which is a P2P network using a dis-
tributed hash table (DHT), in other words a structured
P2P network.

3 Mechanisms Against Free Riding

We think that in order to reduce the amount of free
riding and increase cooperation among peers, availabil-
ity of a set of mechanisms is required.

We try to create an environment in which peers will
be monitored about their contributions to a P2P net-
work and enforced to act in more cooperation and to

2

contribute to continue using the services and resources
of the P2P network.

3.1 Design Criteria

While developing some mechanisms to prevent or
diminish free riding, we need to consider several design
issues some of which are listed below:

• Simplicity: The actions observed and reactions
to them should be simple to implement and man-
age.

• Decentralism: Making decisions and taking ac-
tions should be executed in a decentralized way.

• Low overhead: Methods should not cause much
overhead. Non-free riders should not devote much
resources to prevent free riding.

• Abuse-proof: Peers may try to walk around
mechanisms by misreporting their status or imple-
menting their own client programs. Mechanisms
must not depend on information provided by peers
solely. Instead, mechanisms should depend on
P2P paradigm to collect information about peers.

3.2 Performance Metrics

We propose the use of the following metrics to evalu-
ate the performance of a P2P system that applies mech-
anisms to prevent and reduce free riding.

• Quality of Service: If possible, quality of service
(QoS) received from a P2P network by non-free
riders should be increased, where the QoS received
by free riders should be decreased. QoS parame-
ters may include search time spent in resolving
queries, hit quality and quantity, and download
time.

• Availability: We expect that by increasing the
cooperation between peers and by forcing free rid-
ers to contribute, availability of content and ser-
vices in a P2P network can be increased. For ex-
ample, a scheme that could replicate popular items
on free riders would increase hit ratio for those
items, even though the original content providers
would leave the system.

• Load Sharing and Scalability: Content
provider peers can be bottleneck due to excessive
search and download operations they are involved
in. Via increased cooperation in a P2P system,
the load on those peers can be also shared by other
peers that would otherwise be free riders. This will
help the system to be more scalable where larger
number of search queries and download operations
can be executed on the system successfully.

PMPM

PM

PM

PC PMPC

PC

PC

PC

Figure 1. Peers can be in two roles: monitor-
ing and controlled.

• Robustness: Mechanisms against free riding can
make a P2P network more robust against discon-
nections and legal attacks, which will increase net-
work population in terms of available content and
also in terms of number of nodes that are reach-
able. This will expand the search horizon and will
increase the hit ratio in search operations.

3.3 Locating and taking actions against free riders

We propose a system in which every peer passively
monitors the activities of its neigboring peers. In the
proposed system, peers can be classified into two dif-
ferent roles as shown in Figure 1. In the first type of
role, a peer functions as a monitoring peer, PM , which
monitors and records the number of messages coming
from and going to neighboring peers. The messages are
implemented with descriptors in Gnutella Protocol [3]
(see Table 1), the protocol upon which our solution is
based. At the same time, each peer is a controlled peer,
PC , which means that its messages are monitored and
counted by its neighboring peers.

3.3.1 Locating Free Riders

In order to determine if a peer PC is a free rider or not,
we may exploit several clues that may be derived from
its observed behaviours. To derive the clues about the
neigboring peers, we need to maintain several informa-
tion about the neighbors and their behaviors. Due to
the small-world phenomena, average number of neigh-
bors of a peer is expected to be about 3-4 [5]. There-
fore, this process does not impose high overhead on
peers.

The information that is maintained about neighbors
of a peer constists of some statistical counters which are
presented in Table 2. These counters are updated when
messages are received from the neigbors and when mes-
sages are sent towards the negbors. The clues about
the neigboring peers (if they are free riders or not, and
the types of free riding they exhibit if they are free
riders) are derived from the values of these counters.

One issue to consider is whether there exists enough
time to collect statistical information from neigboring
peers and make decisions. It is known that in a P2P

3

Table 1. Gnutella Protocol Descriptors

Descriptor Description

Ping Used to actively discover hosts on the
network. A servent receiving a Ping
descriptor is expected to respond with
one or more Pong descriptors.

Pong The response to a Ping. Includes the
address of a connected Gnutella
servent and information regarding the
amount of data it is making available
to the network.

Query The primary mechanism for searching
the distributed network. A servent
receiving a Query descriptor will
respond with a QueryHit if a match is
found against its local data set.

QueryHit The response to a Query. This
descriptor provides the recipient with
enough information to obtain the data
matching the corresponding Query.

Push A mechanism that allows a firewalled
servent to contribute file-based data
to the network.

network peers can join and leave the system at any
time. We can find some related work in the literature
about the network topology dynamics and peer char-
acteristics of P2P applications. In [8], it is stated that
about 40% of the peers leave the Gunetella network
in less than 4 hours, while only 25% of the peers are
alive for more than 24 hours. In another work [10], the
median session duration of both Napster and Gnutella
clients is about 60 minutes. In a similar work [4], 90%
of average session lengths of Kazaa clients is found to be
about 30 minutes. As a result, it can be assumed that
peers stay connected long enough to collect statistical
information about them and take necessary actions.

Another issue is whether a monitoring peer can
snoop and monitor enough number of messages that are
coming from or going towards the neighboring peers.
In [6], it is reported that the average number of queries
per second for three peers located at different geo-
graphic locations is about 50. Also, about 30 query
responses per second are recorded. This shows that a
peer will have enough number of messages forwarded
over itself to judge if a neighboring peer is a free rider
or not.

3.4 Free Riding Types

In this section, we identify some possible free riding
types that a peer may exhibit. We also formulize how
the identified free riding types can be detected by using
the statistical information gathered about a free riding
peer.

Table 2. Observed Counters
Symbol Description

QP Number of Query descriptors submitted
by PC .

RQP Number of Query descriptors routed
by PC .

TQP Number of Query descriptors routed
towards PC .

QHP Number of QueryHit descriptors
submitted by PC .

RQHP Number of QueryHit descriptors routed
by PC .

SQHP Number of QueryHit descriptors
satisfying queries of PC .

NP Number of Notify descriptors
submitted for PC .

• A peer does not share anything at all or
shares uninteresting files. It may be ob-
served that a neighboring peer does not return any
QueryHit messages to the queries that it receives.
There may be two reasons for that: either the peer
does not have any files matching the queries, or the
peer does not share any files at all. To decide if
a peer is a zero-content (or an uninteresting con-
tent) contributor, whenever the monitoring peer
initiates a search or routes a search on behalf of
another peers by sending a Query message to its
neighbors, the monitoring peer also increases the
value of the respective TQ counters (maintained
in a log table) for its neighbors. The monitoring
peer also observes and counts the QueryHit mes-
sages received from the neighboring peers. If the
monitoring peer receives a QueryHit message that
has the IP address of one of its neighbors in it,
the monitoring peer increases the value of the QH
counter maintained for that peer in the log table.
Receiving a QueryHit message originating from a
neigboring peer indicates that the neigboring peer
is sharing an interesting file that is requested.

The monitoring peer then compares the values of
TQ and QH counters maintained for a neighboring
peer, to decide if that peer is a free rider that is not
sharing any files (a non-contributor). More specif-
ically, for this decision to be made, the monitor-
ing peer may compare the QH/TQ ratio against
a theshold value and decide that the neigbor is a
free rider of type non-contributor if the ratio is
smaller than the threshold. Several different ap-
proaches for setting up a threshold value may be
proposed3. Below, we formulize the condition that
is required to judge if a neigboring peer is a free

3We may set up a constant value for unsatisfied query number,
(TQP −QHP), e.g. 100. Or we may use a time based threshold,
e.g. 10 minutes. If there is no QueryHit message from the peer in
that period of time, we may treat this peer as non-contributor.

4

rider or not.

Furthermore, to remove the warm-up period and
to obtain valid statistical information we propose
to use a threshold value for the number of for-
warded Query messages to the observed peer, τTQ.
A monitoring peer start deciding about a neigh-
boring peer after this threshold.

if (TQP > τTQ) and (QHPTQP
< τnon contributor) then

peer P is considered as a non-contributor

endif

• A peer consumes more resources than
that it shares. A monitoring peer counts
the QueryHit responses (QH) originated from
its neighbors and successful QueryHit messages
(SQH) destined to and received by its neighbors.
The comparison of these two numbers reveals if
any of the neighboring peers consumes more than
it shares. More specifically, a threshold value,
τconsumer, can be compared against the ratio of
these two numbers. If the ratio QH/SQH is
smaller than the threshold, a decision that the
neigboring peer is a free-rider of type consumer
can be made.

if (TQP > τTQ) and (QHP
SQHP

< τconsumer) then

peer P is considered as a consumer

endif

• A peer drops others’ queries.

A monitoring peer counts Query and QueryHit

messages forwarded by each of its neighbors. If
these two values are very low for a neighbor-
ing peer, it can be assumed that the neighboring
peer does not have enough connections or it drops
queries and/or query hits. τdropper is used as a
threshold value. We call this type of free rider as
a dropper.

if (TQP > τTQ) and (RQP+RQHP
TQP

< τdropper) then

peer P is considered as a dropper

endif

3.4.1 Actions against Free Riders

If a peer identifies another peer as a free rider, it can
take some counter-actions against it. We specify three
level of actions. Level 1 action is the least restrictive
for the free rider. Level 3 action is the most restrictive
for the free rider.

• Level 1 Action: Decrementing TTL value:
Normally, when a peer receives a Query mes-
sage from a neighboring peer, it first executes the
search on local files for a match, then the Query is
forwarded to the other neighboring peers. Before
the Query message is forwarded, its TLL value is

decremented by one. To act against a suspected
free rider, the monitoring peer can play with the
TTL value for Query messages that are received
from the suspected peer, i.e. it can decrement the
TTL value by more than one before forwarding.
In this way, the search horizon of the free riding
peer is narrowed down. This also reduces the over-
head that Query messages are imposing on the net-
work.This counter-action is applied to a peer that
exhibits only one type of free riding, i.e. it is either
a non-contributor, or a dropper, or a consumer.

• Level 2 Action: Ignoring requests: A free
rider can be punished by the monitoring peer
by ignoring the searches (i.e. the Query mes-
sages) originating from that free riding peer. The
Query messages originating from the free rider
peer can be partially or totally ignored. Ignor-
ing a Query message means not searching the lo-
cal files for a match and not forwarding the Query

any more. In other words, the Query is message
is simply dropped. We can do this action para-
metric, so that the probability of ignoring (drop-
ping) the Query messages can be adaptive and tun-
able. However, a monitoring peer should be care-
ful about the origin of the Query messages while
dropping them. It has to drop only the messages
that are originated from a free riding peer. This
counter-action is applied to a peer that is exactly
exhibiting two types of free-riding (for example a
peer that is both a consumer and a dropper).

We expect that ignoring the requests of free riders
(fully or partially) does not only punish the free
riders, but also improves the overall system perfor-
mance. If not controlled, Query messages may be-
come a significant fraction of overall network traf-
fic. For example, as it is pointed out in [9], an
18 bytes of search string in a Query message may
cause 90 megabytes of data to be forwarded by
the P2P network peers. As another example, [1]
states that total number of messages including the
responses triggered by a single Query message can
be as large as (assuming 4 connections per peer):

2 ∗
TTL∑

i=0

C ∗ (C − 1)i = 26240 (1)

• Level 3 Action: Disconnecting from net-
work: If a peer is sure that a neighboring peer is
a free rider that is exhibiting all types of free rid-
ing, the peer may drop the connection with that
peer. In that way, the peer saves its resources
which can later be allocated to another peer. The
difference between ignoring (all or partial) search
request and disconnection is that, in the preceding
method, if any change in behavior of the peer is ob-
served, the punishment can be canceled. However,
when disconnection is executed, the disconnected

5

peer should reconnect to the system through a new
peer.

3.5 Putting all together

In the previous sections we have discussed the clues
to detect free riding types and possible counter ac-
tions that can be taken against free riders. We now
would like to integrate them together using an ECA
(event-condition-action) rule and a finite state machine
(FSM). As described in section 3.4, a free-riding peer
can be a non-contributor, or a dropper, or a consumer,
or a combination of these. A neighboring peer can be
also a good behaving peer, in which case it is not a
free-rider and it will not show any of the mentioned
free riding types.

As the first step towards a formal description, we
will use three Boolean variables to denote if a neigh-
boring peer is non-contributor, or a dropper, or a con-
sumer or not. We call these three Boolean variables as
N (for non-contributor), D (for dropper), and C (for
consumer). If the counter values maintained at the log
table of the monitoring peer indicate that the neigh-
boring peer is a non-contributor, then N has the value
1, otherwise it has the value 0. If counter values at the
log table indicate that the peer is a dropper, then D has
the value 1, otherwise D has the value 0. If the counter
values indicate that the peer is a consumer, then C has
the value 1, otherwise it has the value 0.

When the counters maintained for the neighboring
peer P at the log table of the monitoring peer change,
the values of these variables (N, D, and C) may also
change. For example, if (QHP /TQP) ratio was first
smaller than the respective threshold (i.e. N = 1), and
later becomes greater than that threshold, peer P be-
comes no longer a non-contributor and the value of N
changes from 1 to 0.

At any moment in time, depending on the counter
values maintained in the log table of a monitoring peer
(and hence depending on the values of the above men-
tioned three Boolean variables) we may have one of the
following eight conditions shown in Table 3 holding for
a neighboring peer P.

Table 3. Conditions
N D C Condition

0 0 0 C0
0 0 1 C1
0 1 0 C2
0 1 1 C3
1 0 0 C4
1 0 1 C5
1 1 0 C6
1 1 1 C7

If, for example, condition C0 holds at a given time,
that means there is no free-riding at all at that time.

If one of the conditions C1, C2, or C4 holds at a given
time, that means only one type of free riding is exhib-
ited by the neighboring peer P. This means, peer P is
either a non-contributor, or a dropper, or a consumer.
In other words, either N, or D, or C has the value of
1, and the other two variables have the value of 0. If
one of the conditions C3, C5, or C6 holds at a given
moment, that means the peer is exhibiting exactly two
types of free riding. In other words, both N and C, or
both N and D, or both D and C are 1. If condition C7
holds at a given moment, that means the peer is show-
ing all types of free riding, i.e. the peer is a consumer,
a dropper, and at the same time a non-contributor.

A monitoring peer may apply the appropriate
counter-action policy against a neighboring peer de-
pending on the values of N, D, and C (i.e. depending
on the current condition defined by these three vari-
ables). Table 4 shows what action is to be taken against
the neighboring peer under which condition. If, for ex-
ample, condition C0 holds, there is no free-riding and
therefore no counter-action is applied against the peer.
If one of the conditions C1, C2, or C4 holds, then the
level 1 counter-action is applied. If one of the con-
ditions C3, C5, or C6 holds, then the level 2 counter
actions is applied. If condition C7 holds, the level 3
counter action is applied and the peer is disconnected.

Table 4. Conditions and Counter-Actions
Conditions Action Level Action Description

C0 Level 0 No counter-action

C1, or
C2, or
C4

Level 1
Reduce TTL by
more than 1

C3, or
C5, or
C6

Level 2
Ignore Requests
Partially

C7 Level 3 Disconnect

We will represent each row at the above table with a
state in the monitoring peer. When there are updates
on the log table counters, the state of the monitoring
peer may change, since the condition may change. In
each state (i.e. each row of table above) we will apply a
different counter-action to a peer. We have four states:
S0, S1, S2, and S3 (as shown in Table 5). When the
monitoring peer is in state S0 for a neighboring peer P,
only the condition C0 may hold and no counter action
is applied. When the monitoring is in state S1, one of
the conditions C1, C2, or C4 may hold, and the level
1 counter action is applied.

If we state briefly, the level of counter action to be
applied depends on the current state. At state S1 the
level 1 counter action is applied, at state 2 the level
2 counter action is applied, and at state 3 the level 3
counter action is applied. We may have a transition
between two states when the condition (values of N,
D, and C) changes upon updates on the log table. The

6

Table 5. States, Conditions, and Counter-
Actions

State Conditions Action Level

S0 C0 Level 0

S1
C1, or
C2, or
C4

Level 1

S2
C3, or
C5, or
C6

Level 2

S3 C7 Level 3

C7

C7

C7

C3, C5, C6

S0 S1 S2 S3
C1, C2, C4

C1, C2, C4 C3, C5, C6

C0

C0

Figure 2. State diagram

Figure 2 shows the whole state diagram that shows
all possible transitions. If, for example, the monitoring
peer is in state S1 for a neighboring peer and an update
occurs on the log table that causes a new condition to
appear, the monitoring peer can make a transition to
either the state S0, or the state S2, or the state S3
depending on the new condition. If the new condition
is C5, the new state becomes S2; if the new condition is
C7, then the new state becomes S3; if the new condition
is C0, then the new state becomes S0.

On the above state diagram, if the monitoring peer
makes a transition towards right, it means it is increas-
ing the level of counter-action that is to be applied to
the neighboring peer. If the monitoring peer makes a
transition towards left, it means that it is decreasing
the level of counter action that is to be applied to the
neighboring peer.

We can express the transitions that a monitoring
peer has to make upon an update on the log table and
a change on the condition using an ECA rule (Fig-
ures 3, 4, 5, 6). Upon a transition, the monitoring
peer moves to a new state where it applies a different
counter action policy towards the neighboring peer.

4 Possible Attacks and Counter Mea-
sures

As pointed out in section 3.1, an important design is-
sue for mechanisms against free riding is having abuse-
proof property. Aiming to investigate this issue, in

Figure 3. ECA rule that governs the state tran-
sitions

define rule StateTransition
on update log table(QHP , TQP , ...)
if (State == S0) then

Execute ConditionalAction-0
elseif (State == S1) then

Execute ConditionalAction-1
elseif (State == S2) then

Execute ConditionalAction-2
endif
endrule

Figure 4. Contitional Action 0

ConditionalAction-0:

if (Condition == C7) then
State = S3;

elseif (Condition == C1
∨ Condition == C2
∨ Condition == C4) then

State = S1;
elseif (Condition == C3

∨ Condition == C5
∨ Condition == C6) then

State = S2;
else

Do not change state
endif

this section we discuss a list of possible counter at-
tacks against free riding prevention mechanisms. We
also discuss how we can defend against those kind of
attacks.

• Fake QueryHit Messages: A free rider can cheat
its neighbors by replying to some queries with
QueryHit messages fraudulently as if it has the
requested file. But when the requesting peer asks
for the file, it may just refuse the connection. In
this way it may seem to the network as it is serv-
ing well, since neighboring peers may not be aware
of unsuccessful download and cheating (download
path may be different than the Query and Query-
Hit paths). In the log tables of the neighbors, the
malicious provider may seem to be a non-free rider
because of its QueryHit replies.

Given the descriptors in Table 1, it may not be
possible for a neighboring peer to observe and per-

7

Figure 5. Conditional Action 1

ConditionalAction-1:

if (Condition == C0) then
State = S0;

elseif (Condition == C3
∨ Condition == C5
∨ Condition == C6) then

State = S2;
elseif (Condition == C7) then

State = S3;
else

Do not change state
endif

Figure 6. Conditional Action 2

ConditionalAction-2:

if (Condition == C0) then
State = S0;

elseif (Condition == C1
∨ Condition == C2
∨ Condition == C4) then

State = S1;
elseif (Condition == C7) then

State = S3;
else

Do not change state
endif

ceive this kind of fake messages. Because, down-
load occurs between two peers outside the P2P
network and there is no feedback mechanism or
reputation concept in unstructured P2P networks.
To prevent this kind of fake QueryHit messages,
we propose to use a new descriptor (see Table 6).
The descriptor is used to report a malicious peer to
its neighbor to inform that the peer is believed to
be a cheater. When a querying peer is refused by
a responding malicious peer during the attempt
of the download, the querying peer may send a
Notify descriptor through the P2P network to
reach the neighbor of the malicious peer. To avoid
an increase in the network traffic, the querying
peer does not broadcast the descriptor message.
Instead, it forwards the descriptor to only one
neighbor which has delivered the QueryHit mes-
sage, containing the IP of denying peer. Any inter-
mediate peer on the way to the last peer, forwards

Table 6. New Protocol Descriptor
Descriptor Description

Notify Used to report a suspected
peer that refused to upload
the file it provided in
QueryHit descriptor in
respond to a given Query

descriptor.

the Notify message to only one neighboring peer
based on the Query Descriptor Id. The last peer
is the neighbor of the suspected peer. It checks
and logs the Notify message and takes necessary
actions against the suspected malicious peer. The
Query descriptors are stored in the network for
some time to route QueryHit descriptor in the
same backward path. Therefore, we do not en-
force to store new information on the peers. How-
ever, the time for deleting records from routing
tables should be extended such that an unsuccess-
ful download attempt can be executed.

There could be some side effects of the proposed
Notify descriptor. As stated before, small number
of peers provide large amounts of files in the sys-
tem and they are posed to heavy download traffic.
Furthermore, some peers have very limited upload
bandwidth. These peers may refuse more connec-
tions when they reach the maximum number of
connections. If a download from such a peer can
not be initiated, submitting a Notify descriptor
for this peer would be unfair and incorrect. To hin-
der these kinds of false notifications, we propose
to use a ratio of the Notify messages to QueryHit

messages for a given peer. If it exceeds a prede-
fined parameter, e.g. 80%, then proper actions can
be taken against the peer.

• Fake Files

Free riders could share dummy files with popu-
lar names in order to cheat querying peers. These
files can be very small in size to incur upload over-
head. In that way, free rider peers can conceal
themselves. We believe that this situation can also
be prevented by using the Notify descriptor pro-
posed above.

5 Conclusion

In this work, we have proposed a distributed and
measurement based method to reduce the degree of
free riding in unstructured P2P networks. We have
first specified possible free riding types and counter
actions that can be taken against free riders. Then,
we have proposed mechanisms which can detect free
riders and employ counter actions against them. Fur-
thermore, we have combined these mechanisms into

8

a formal framework by using an RCA rule and finite
state machine showing what kind of counter action is
to be applied under which condition. The mechanisms
proposed for reducing the amount of free riding meet
the essential requirements of P2P paradigm, such as
distributed computing, anonymous connections, unre-
liable connections, and so on. We have also proposed
a new descriptor (a Notify message) to be used against
the counter attacks by malicious peers to the proposed
mechanisms.

By reducing the amount of free riding in a P2P net-
work, we expect also to increase the quality of service
that peers can get from the network, the availability
of content and services, the robustness of the system,
the balance of the load on network peers and elements,
and the scalability of the network.

We are currently developing a simulation program
to implement and evaluate the proposed system and
different mechanisms proposed to handle free riding
problem in P2P networks.

References

[1] K. Aberer and M. Hauswirth. An overview of peer-to-
peer information systems. WDAS, 2002.

[2] E. Adar and B. A. Huberman. Free riding on gnutella.
http://www.firstmonday.dk/issues/issue5 10/adar/,
2000.

[3] Clip2. The gnutella protocol speci-
fication v0.4 (document revision 1.2).
http://www9.limewire.com/developer/gnutella proto-
col0.4.pdf, Jun. 2001.

[4] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Work-
load. In the Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP-19), October
2003.

[5] M. Jovanovic, F. Annexstein, and K. Berman. Scal-
ability issues in large peer-to-peer networks - a case
study of gnutella. Technical Report, University of
Cincinnati, 2001.

[6] E. P. Markatos. Tracing a large-scale Peer to Peer
System: an hour in the life of Gnutella, pages 65–74.
In the Proceedings of the second IEEE International
Symposium on Cluster Computing and the Grid, May
2002.

[7] L. Ramaswamy and L. Liu. Free riding: A new chal-
lenge to peer-to-peer file sharing systems. 36th An-
nual Hawaii International Conference on System Sci-
ences (HICSS’03) - Track7,Big Island, Hawaii, Jan-
uary 2003.

[8] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping
the gnutella network: Properties of large-scale peer-to-
peer systems and implications for system design. IEEE
Internet Computing Journal special issue on peer-to-
peer networking, 6, 2002.

[9] J. Ritter. Why gnutella can’t scale. no, really.
http://www.darkridge.com/ jpr5/doc/gnutella.html,
February 2001.

[10] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Mea-
surement Study of Peer-to-Peer File Sharing Systems.

In the Proceedings of the Multimedia Computing and
Networking 2002 (MMCN’02), January 2002.

[11] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
Karma: A secure economic framework for p2p resource
sharing. In Proceedings of the Workshop on the Eco-
nomics of Peer-to-Peer Systems, June 2003.

9

