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ABSTRACT 

Clustering is one of the important analysis methods in Data Analytics and Pattern 
Recognition. Clustering divides the data into groups without any supervision or 
external labels and it is a subjective analysis as the definition of a cluster is context 
dependent. Because of this reason many algorithms, like kNN, require the number of 
clusters to be fixed apriori. Each clustering algorithm depends on a distance metric 
to identify different groups in the data. Once the number of centers are fixed, each 
algorithm tries to find the best separation according of its distance measure by using 
an optimization algorithm. The distance metric determines the shape of the clusters 
generated. There are algorithms, like Ward, to determine the number of clusters in a 
data set and these algorithms also depend on the same distance metrics where many 
metrics, like Euclidean and its derivatives, generate hyper ellipsoidal clusters and 
fail in nonlinearly clustered data. Another computationally expensive approach is to 
run a specific algorithm for different number of cluster centers and try to choose the 
best number. In this paper, we attempt to analyze the number of clusters using a 
previously developed Information Theoretical metric called CEF which; in its 
original use; can separate nonlinear clusters. Data points that are close to each other 
are incrementally joined together using a distance measure to create subclusters like 
joined data points against the rest of the data. The operation continues until all data 
elements are consumed. The CEF metric is used to measure the distance between 
obtained clusters where peaks in the measure indicates strong cluster separation. The 
method is tested in several artificial and real data sets and its advantages and 
disadvantages are discussed. 
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1.  INTRODUCTION 

Clustering is an unsupervised pattern classification method that partitions the input space into 
clusters. The goal of a clustering algorithm is to perform a partition where objects within a cluster 
are similar and objects in different clusters are dissimilar. Therefore, the purpose of clustering is to 
identify natural structures in a dataset [1–5] and it is widely used in many fields such as 
psychology [6], biology [4], pattern recognition [3], image processing [7] and computer security 
[8].   

Estimation of the number of clusters in a data set is an important theoretical and practical 
problem in cluster analysis. With too few clusters, one cannot preserve the most relevant 
information about the structure of the dataset X. On the other hand, with too many clusters, 
resources are wasted by processing non-relevant data. Many clustering algorithms are not able to 
determine the number of natural clusters in the data, and therefore they must initially be supplied 
with this information—frequently known as the k parameter. Since this information is rarely 
previously known, the usual approach is to run the algorithm several times with a different k value 
for each run. Then, all the partitions are evaluated and the partition that best fits the data is 
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selected. The process of estimating how well a partition fits the structure underlying the data is 
known as cluster validation [1]. 

The algorithm is run over the dataset with a set of m different values for the k parameter, K = 
{k1, k2, . . . , km}. In this way, a set of m partitions is obtained, S = {P1, P2, . . . , Pm}, but just 
one of them has partitioned the data with the correct number of clusters. 

Cluster validity indices are usually based on external criteria, internal criteria and relative 
criteria [9]. For example, some indices are based on considering the compactness within each 
cluster or the separation between clusters [10–13], some are based on the information entropy or 
based on measuring in-group proportion of objects [14,20,21]. Yu and Cheng [15] study the range 
where the optimal number of clusters between the minimal number and the maximal number in 
FCM clustering algorithms. Some of CVI methods are combined with FCM (fuzzy C-mean) 
algorithms [16–18]. Chen et al. [19] propose a hierarchical method, COPS (clusters optimization 
on preprocessing stage) method, to determine the number of clusters by the two-steps processing. 

Generally speaking, most of the discussed cluster validity checking methods are based on the 
following process to obtain the optimal number of clusters. A typical process for determining the 
number of clusters in a data set is: firstly, different partitions, also be called as cluster results or 
clustering schemes, are obtained through a certain clustering algorithm in which the different 
parameters used usually such as the number of clusters; then the criteria count on the different 
partitions; the parameter meets the predetermine conditions is selected to be the optimal number of 
clusters after analyzing the size or the variability of the different criteria. 

In Chapter 2, the distance function used in the calculation will be described. Chapter 3 
describes the new method to analyze the number of clusters. Chapter 4 gives results using artificial 
and real datasets. The discussion of results are given in Chapter 5 and conclusion is given in 
Chapter 6. 

2.  INFORMATION THEORY AND CLUSTERING 

Clustering is an unsupervised method to separate data into groups by using a certain metric or 
distance function in such a way that the groups or clusters are more similar within, compared to 
other grouping choices. Similar to edge detection, clustering is also a subjective division 
depending on the distance measure. Some distance measures can only divide the data using a 
linear boundary where others can perform a nonlinear separation. Even the human eye will cluster 
the same data differently depending on other conditions and context.  

Information theory has been used as a distance measure successfully in one of the author’s 
previous paper [5]. Using an information theoretic measure, nonlinear regions can be separated 
without any supervision. The derivation of the distance measure or CEF (Cluster Evaluation 
Function) was given elsewhere [5] and it will not be repeated here. Only the final formulation will 
be used. In (1), p and q are clusters of size Np and Nq, respectively where xi p and xj q. The 

Gaussian kernel needs a parameter  for the kernel size. The proper value of this parameter is 
important in clustering which needs to be determined. 
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A feature vector needs to be extracted from the data to be clustered. The feature set can be any 
original and/or transformed subset of the data which provides a good description of data. Using the 
feature set as an input to the distance measure, labels are assigned to each cluster such that the 
distance between different labels (clusters) has the maximum value. Searching the optimal labeling 
may need an exhaustive search and some heuristic algorithms are applied to limit the search space. 
As explained in [5], the final result is very promising and a nonlinear separation of clusters is 
possible with this method without any supervision as shown in Fig 1. It should be noted that the 
distance measured by CEF is inversely proportional to the distance between clusters. 
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Figure 1: Dataset labels after an unsupervised clustering using CEF function [5]  

3.  PROPOSED CLUSTER SEPARATION INDEX 

In this section, the proposed information theoretic cluster separation method is presented. The 
motivation of the proposed method is to process the data once and obtain information about 
possible number of clusters in the data. The distance function (CEF) which is described earlier will 
be used in the calculation.  

3.1  Subclusters and Grouping 

The calculations start by forming two cluster sets, i.e. p and q. One cluster is formed initially by 
finding two closest point to each other in the dataset using a Euclidean distance measure. Since we 
are not measuring any cluster separation during this procedure, any distance metric can be used. 
The second cluster is formed by the rest of the data except the points in the first cluster. At any 
time, the points belong either to the first cluster or to the second cluster. After the initialization of 
two clusters, the procedure continues by finding the closest point x in cluster q to any point in 
cluster p one at a time as shown in Fig. 2. The points x1 and x2 are the closest two points in the data 
set. The first group is formed by putting these points together as cluster p. The rest of the data 
belongs to cluster q. During the next step, the closest point is found in cluster q to any member of 
cluster p. The point x3 is the closest point to the group formed by x1 and x2. The next stage is to 
move the point x3 from cluster q to the group (i.e. to cluster p). The cluster p grows one at a time 
by finding the closest point in cluster q. 

 

Figure 2: Group forming by finding the closest point to any group members 

3.2  Cluster separation 

During the iteration, cluster p will increase and cluster q will decrease one point at a time. After a 
new point is removed from cluster q and added to cluster p, the distance between these two 
clusters are measured using CEF distance function. One instance is shown in Fig. 3. 
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Figure 3: Two cluster groups are formed and CEF between these groups is calculated 

Once each point is processed, the array obtained by calculating CEF distance between clusters 
at every step is analyzed to determine the possible clusters in the dataset. Low peaks in the plot 
indicate a strong indication of cluster separation. The algorithm is given in Fig. 4. 

 

Figure 4: Number of Clusters Algorithm 

4. EXPERIMENTAL RESULTS 

The algorithm is tested using several artificial and real datasets and the results are discussed.  

4.1  Artificial datasets 

An example dataset is shown in Fig. 5. 
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Figure 5: 2-dimensional dataset with 2 main clusters 

 

 

 

The plot of CEF distance function is shown in Fig. 6. The horizontal axis consists of all points 
in the dataset and vertical axis is the log(CEF) value between clusters formed at every step during 
the iteration. The logarithm is displayed to enhance the small values in the calculation.  

 

Figure 6: log(CEF) plot of the dataset 

The plot indicates a very strong low value at point 31 which indicates that the data has 2 main 
clusters in it. The other less small peaks indicate other sub clusters and the importance of these 
clusters is context dependent. The cluster p and cluster q at point 31 is shown in Fig. 7.  

 

Figure 7: Cluster separation at lowest peak of CEF plot 

 

When a different distance metric is used, the separation point is wrong unlike the point in CEF 
calculation. When we use a Euclidean distance the plot is given in Fig 8.  
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Figure 8: Euclidean Distance plot 

The results for other artificial datasets are shown in Fig. 8. to Fig. 12.  

 

Figure 9: Results using a dataset with 2 clusters 

 

Figure 10: A dataset with 3 different main clusters 
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Figure 11: A different dataset with 2 main clusters 

 

Figure 12: A dataset with 4 different main clusters 

 

4.2  Real datasets 

The algorithm is tested using Fisher’s Iris data set. The Iris data set is 4 dimensional and it is not 
possible to plot all dimensions together. It is known that two species have overlapping features. 
Features 1 and 2 and the CEF plot are shown in Fig. 13. using different color and shapes for 
different species where the overlap can be seen very clearly. The CEF plot shows the first cluster 
but fails to show the second one. 

 

Figure 13: Iris data set and CEF plot 
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 The second dataset is from UCI Machine Learning Repository [22]. The Banknote 
Authentication dataset has 4 dimensional feature set with two classes. When we plot different 
combinations of features, we can see that the classes overlap heavily. Also sub clusters are visible 
in the dataset as in Fig. 14.  

 

Figure 14: Banknote dataset a) features 1,2 b) features 1,3 c) features 3,4 

The CEF plot shows noisy output at borders where one cluster has most of the points and the 
other cluster is almost empty. Ignoring the end points, the plot shows a strong indication for 2 
clusters as shown in Fig 15. But it also shows other major cluster separations as well which can be 
seen in Fig. 13.  

 

Figure 15: Banknote CEF plot showing 2 main clusters and smaller sub clusters 

5. DISCUSSION 

When the clusters are well separated even highly nonlinearly (nonconvex), the CEF Index has not 
trouble identifying strong cluster separation points. The calculation requires only one pass through 
the data points and it is possible to obtain a good indication about the number of clusters. On the 
other hand, overlapping features are reducing the separation since no assumptions are done about 
any model or distribution. Another concern is that the initial and ending conditions of the plot 
shows noisy output because of the reduction of points in one cluster. It is wise to assume that 
outliers will create a similar problem. Extra calculations are needed to compensate the reduction. 

 

6. CONCLUSIONS 

In this paper an algorithm is proposed to find information about the possible number of clusters in 
a dataset. The present algorithms are trying to find the number of clusters by running a given 
clustering algorithm by changing the cluster number from 2 up to the maximum number of points 
in the dataset. During the calculation different metrics are used to measure the validity of the 
clusters generated. Running the algorithms repeatedly by changing the assumed number of clusters 
is a time consuming task. The proposed algorithm is going through the dataset only once without 
assuming any number of clusters. The nonlinearly weighted CEF distance functions shows a 
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strong separation at cluster boundaries and by counting the minimum peaks, it is possible to get a 
very reliable information about the possible number of clusters in any dataset.  
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