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Özet— Son zamanlarda gerek askeri gerekse sivil amaçlı İnsansız Hava Aracı (İHA) kullanımı giderek popülerlik 

kazanmaktadır. Ancak İHA’ların etkin kullanımı için gerekli Servis Kalitesi(QoS)’ni karşılaması için benimsenen 

yaklaşımlarının sınırlamaları vardır. İHA’lar arasındaki kıyaslamanın önemli sınırlarından biri de uçuş menzilidir. Çoğu 

zaman, İHA'ların, yeterli enerji kaynağı olmaması ve böylelikle nispeten kısa uçuş menzillerine sahip olmalarıdır. İlave 

olarak, İHA’ları kullanan uygulamalar için, verilen hizmet süresi zamanı içerisinde ziyaret edilmesi gereken pek çok 

nokta olabilir. Üstelik, uygulamalar tarafından yönlendirilecek İHA’ların sayısı da sınırlıdır. Bu nedenle, gerçek 

hayattaki uygulamalarda, önceden belirlenen zaman aralığı pencerelerinde daha fazla noktanın ziyaret edilmesi 

maksadıyla belirli bir uçuş menzili olan çok sayıda İHA için bir optimizasyon sorunu ile karşılaşılmaktadır. Bu 

problemde biz, kullanılan İHA sayısını en aza indirmek ve zaman aralığı içerisinde ziyaret edilecek nokta sayısını en üst 

düzeye çıkarmak istiyoruz. Bu nedenle, Genetik bir algoritma tasarladık ve çeşitli uçuş menzilleri, servis zaman 

aralıkları ve nokta ağ topolojileri için kapsamlı simülasyon testleri yoluyla etkinliğini doğruladık. Daha da ötesinde, 

tasarlanan algoritma ile arzu edilen başarıyı sağlayabilecek rakip bir algoritma ile de sonuçlar karşılaştırılmıştır.  
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An Efficient Genetic Algorithm for Routing Multiple 

UAVs under Flight Range and Service Time Window 

Constraints 
 

Abstract— Recently using Unmanned Aerial Vehicles (UAVs) either for military or civilian purposes is getting 

popularity. However, UAVs have their own limitations which require adopted approaches to satisfy the Quality of 

Service (QoS). One of the important limitations of the UAVs encounter is the flight range. Most of the time, UAVs 

have very scarce energy resources and, thus, they have relatively short flight ranges. Besides, for the applications using 

UAVs, there could be many customers to be serviced for the given service time windows. Moreover, the number of 

UAVs managed by the applications is also limited. Therefore, in real life applications, we face with an optimization 

problem such that for a given number of UAVs with a specific flight range, they should be servicing more customers in 

the predetermined time windows. In this problem, we would like to minimize the number of used UAVs and maximize 

the number of serviced customers meeting the time window requirement. For this reason, we have designed a Genetic 

Algorithm and validated its effectiveness via extensive simulation tests for various flight ranges, time windows, and 

customer topologies. Furthermore, the results of the proposed algorithm with a rival algorithm supporting the expected 

success have also been compared. 
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) can be defined as “a 

power-driven, reusable airplane operated without a human 

pilot on board” [1].  UAVs are designed to be employed 

in the situations such that it is either dangerous or 

ineffective having human pilots on board. While first 

examples of employment of UAVs are designed for 

military purposes, thanks to development in mechanics 

and electronics along with computer engineering, 

nowadays, UAVs are employed in many different civil 

applications which are gathered under the concept of 

remote sensing. For example, in precision agriculture 

(PA), geospatial techniques and sensors are used to 

identify variations in the field and UAVs are convenient 

tools for collecting such sensor data for PA applications 

[8, 9, 10]. Other UAV application areas can be listed as: 

forest health monitoring, wildlife surveys, avalanche 

patrols, air quality monitoring, groundwater discharge 

monitoring, etc. [11].  

Despite the recent developments and improvements in 

enabling technologies, UAVs have still several 

restrictions. One of the critical aspects of UAVs is the 

limited flight time [2] due to scarce energy resources 

ported on UAV’s platform. Therefore, planning UAV 

routes is critical for their effective usage. For example, 

ineffective route planning can cause to use excessive 

number of UAVs or take excessive amount of flight range 

and time. As a consequence, operational cost can increase 

or, even get worse so that the mission cannot be 

accomplished at all. 

Moreover, applications have their own Quality of 

Services constraints. For example, in some remote 

sensing applications, UAVs are expected to be over some 

Point of Interests (PoIs), e.g. location of customers, 

military targets etc., for the given time window. 

Considering the number of PoIs, the travel time among 

them and the speed and flight range of deployed UAVs; it 

is not a simple task to schedule each UAV to these PoIs 

such that each PoI is served within the time window. In 

fact, this problem originating from TSP is a well-known 

NP-Hard problem [23, 26]. 

In this work, we proposed an iterative Genetic Algorithm 

(GA). In each iteration a route covering maximum 

number of PoIs and satisfying the application constraints 

is generated for a single UAV. Then, the PoIs included in 

this route are excluded from the existing PoI list. 

Afterwards, if there exists any unvisited PoI, we iterate 

the process again. This iterative process continues until all 

PoIs are scheduled. Then, we have a number of routes for 

each UAV such that all the given PoIs are covered under 

the given constraints. 

In the proposed GA, each possible route is modeled as an 

individual (chromosome) for the given UAV respecting 

given Flight Range (FR) and Time Window (TW) 

constraints. At the beginning of any iteration, GA creates 

an initial population of individual by randomly selecting 

PoIs. Afterwards, crossover and mutation operations are 

applied on the initial population to create a new 

generation. The solution which covers more PoIs with 

less route distance is selected as the generation-best 

solution. The generation-best solution is compared with 

the best solution found so far, and if it is better the best 

solution found so far, the best solution found so far is 

updated with it.  Then, this generation is also undergone 

crossover and mutation operations once more to generate 

the next generation as described above. The best solution 

found so far is always copied to the next generation as a 

requirement of elitism principle. Generation creation 

continues until a termination condition is met. When GA 

terminates, it outputs the best route found so far..  

To evaluate the success of the proposed method, another 

approach proposed in [19] is used. In the alternative 

solution, route construction is based on the Nearest 

Neighbor (NN) heuristic. In the NN heuristic, route is 

created by selecting the nearest PoI to the UAV location.  

The nearest PoI must be in a distance from the UAV such 

that the UAV can arrive it during the given time window. 

Moreover, the UAV’s remaining flight range after visiting 

this PoI must be enough to return to the base. The details 

of application of the NN heuristic into the problem in 

question are presented in Section 4.5.  

We implemented both solutions using Java and compared 

them in numerous experiment tests with different 

parameter settings and various benchmark problem data 

files [12]. The success of the proposed GA method is 

observed in the simulation results by decreasing the 

number of UAVs and the travelled distance considerably 

compared to the NN heuristic in [19].   

2. RELATED WORK 

There are several proposed algorithms developed for 

the UAV route planning [28] in the literature. In one of 

our previous works, we proposed a method to minimize 

the number of UAVs used in a battle scenario to cover all 

the targets considering only the flight range [3]. In a 

follow up work, we designed an Ant Colony Optimization 

(ACO) based solution for creating routes to cover 

maximum number of targets when covering all of them is 

not possible. In another work, two different algorithms to 

create routes which avoid flying over risky territories [5, 

6] are proposed. We proposed a novel routing algorithm 

which considers the mobile base, e.g. an aircraft carrier, 

in [4]. In [7], it has been developed an improved Genetic 

Algorithm (GA) for planning a route considering the 

flight range and service time window limitations for a 

single UAV whereas in [19] we developed a heuristic 

solution for the multiple UAVs. In this work, we aim to 

create more effective routes for multiple UAVs than those 

of in [19] by designing a novel Genetic Algorithm (GA) 

solution. 

The problem of UAV routing problem resembles to two 

commonly known problems in the literature: Travelling 

Salesman Problem (TSP) and Vehicle Routing Problem 
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(VRP). In both of these problems, main goal is to 

schedule a mobile (salesman or vehicle) to visit some 

locations (cities or depots) considering the given 

constraints (distance, range, time, time window, cost, 

etc.). In this work, the mobile is a UAV, locations are 

PoIs, and, the main constrains are the UAV’s flight range 

(FR) and the visit time window (TW). With respect to 

these basic assumptions, some versions of TSP and VRP 

and theier proposed solutions are worth mentioning.  

The Travelling Salesman Problem (TSP) is the simplest 

form of a routing problem where the goal is finding the 

shortest path between a number of customers, with the 

constraints of visiting each customer once and ending the 

tour where it started. In Multiple Travelling Salesman 

Problem (mTSP), there are more than one salesman to be 

considered. The most basic form of a VRP can be 

considered as the direct successor of the TSP, where there 

is one vehicle and one depot, the rules are visiting all 

customers once and only once, and ending the route at the 

depot it started. In some VRP, each customer needs to be 

served within a given time interval. Such problems are 

named Vehicle Routing Problem with Time Windows 

(VRPTW) [29]. VRPTW is closely related with the 

presented problem and resembles a basic form of that. 

Both problems consider that multiple mobiles to visit 

locations according to the given time windows. Therefore, 

we would like to discuss the solutions for VRPTW in 

details below. 

There are numerous solutions proposed for VRPTW in 

the literature. These solutions can be classified into two 

main groups: Exact solutions and Heuristic-based 

solutions. Exact solutions are based on some well-known 

methods such as; Branch-and-Price, Branch-and-Price-

and-Cut, Pure Branch-and-Cut Algorithms, etc. Though 

Desrochers, Desrosiers, and Solomon [20] were the first 

to propose an exact algorithm capable of solving VRPTW 

instances of respectable size (up to 100 customers), 

finally Irnich and Villeneuve [21] devised a k-cycle 

elimination procedure for k-path inequalities as a Branch-

and-Price Algorithm. Then Jepsen et al. [22] showed how 

cuts can be used in a branch-and price method for the 

VRPTW. This method being the most common one has 

an improved final version which uses tabu search method 

for heuristically solving the sub problems and rapidly 

generating negative reduced cost columns. Desaulniers, 

Lessard, and Hadjar [23] showed the efficiency of branch-

and-price-and-cut approaches applied to the VRPTW.  

Kallehauge, Boland and Madsen [24] is known to present 

the latest study as an example for Pure Branch-and-Cut 

Algorithms. In that study, the algorithm is based on an 

arc-flow formulation of the problem and typically require, 

for obtaining good lower bounds, a large number of valid 

inequality families.  

Beside the exact solutions, there are heuristic-based 

solutions in the literature. These are, among the others, 2-

interchange method, Simulated annealing, Tabu search, 

and Genetic algorithms. For example, Cordeau et al.  

proposed a simple and flexible tabu search algorithm for 

periodic and the multi-depot vehicle routing problems 

with time windows [25]. In another example work, G.B. 

Alvarenga et al. proposed one of the latest GA studies in 

which the behavior of a heuristic method is compared 

against exact methods, and global optimal solutions are 

found using by truncated calculation and total distance 

minimization [26].   

All the solutions mentioned above to the VRPWT assume 

that the mobile (vehicle) can wait if it arrives earlier to a 

given location (depot) compared to the time window and 

this waiting duration does not have any effects on the 

travel distance of the vehicle and, hence, the vehicle 

range. This may be an acceptable assumption for the 

vehicles moving on the ground. However, a flying vehicle 

(e.g. UAV) has two options for waiting for the time 

window to open. Either UAV can continue fly around for 

passing the time or it can land on, wait, and take off 

again. The second option is not always feasible since not 

all the times territory is available for landing. On the other 

hand, the first option causes consuming energy which 

ultimately affects the flight range (FR) of the UAV. In 

essence, the solutions proposed for VRTTW cannot be 

directly applied for cases when UAVs are the vehicles. 

Thus, in this work, we propose a genetic algorithm to 

consider the effect of waiting duration on the UAV flight 

range in the route planning as described below. 

3. PROBLEM DESCRIPTION 

We assume that the coordinates and the visit time window 

of each Point of Interest (PoI) along with the flight range 

(FR) and the number of UAVs are given. The time 

window (TW) determines the ready and due times in 

which the UAV must visit an associated PoI. That is, the 

UAV must service to PoI after the ready time and before 

the due time given in TW of the PoI. Furthermore, we 

assume that UAV takes off and lands on the same 

stationary base. Additionally, flight speeds and ranges of 

all UAV are supposed to be fixed and the same.  

The problem is to generate UAV routes such that (i) all 

the PoIs are visited, (ii) all visits are during the requested 

TW, (iii) each UAV’s total route distance has to be equal 

or less than the specified flight range, (iv) the total  

number of UAVs  is minimized. Thus, target function is 

to minimize the number of UAVs used in visiting all the 

PoIs respecting the given TW and FR constraints. In this 

work, we call this problem as Covering All PoIs with 

Minimum Number of UAVs Problem (CAP/MNU). 

In order to visit any PoI within the given TW, a UAV 

may have to wait for some time before visiting PoI if 

UAV arrives earlier than the ready time. This time period 

is termed as “waiting time”. In order to service to any PoI 

within the ready and due times, the UAV might need to 

delay on the route. This delay may be either in the air or 

as well be on the ground which saves energy 

consumption.  In this work, we assume that UAV 

continues to fly during the waiting time and, thus, 
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consumes its FR.  In a nut shell, the PoIs included in a 

route must be visited between specified ready and due 

times of TW. 

3.1. Genetic Algorithm (GA) 

In the proposed algorithm, we use an evolutionary 

approach, namely, Genetic Algorithm (GA). GA is 

defined as search procedures based on the mechanics of 

natural selection and genetics – at least in some 

qualitative sort of way [13].  Thus, GA is an evolutionary 

algorithm which is an iterative and stochastic method that 

works on a set of individuals (population) [17]. The 

objective of Genetic Algorithm is to develop method and 

theory to allow the design of GAs that solves hard 

problems quickly, reliably and accurately [13, 14, 15]. 

In order to apply a genetic algorithm to a problem, first 

every potential solution is encoded into artificial 

chromosome which consist of genes. While each gene 

stores the PoI id to be visited and visit time, the 

chromosome encodes the path in the order of genes. The 

essential idea is to preserve a population of chromosomes, 

which represent candidate solutions to the problem that 

progress over time through a process of mating to merge 

two solution chromosomes to produce a better solution. 

Solution is modeled as a chromosome by an 

encoding/decoding system. Generally, initial population 

(a set of potential solutions) is randomly generated or by 

using a constructive heuristic. A fitness function is the 

measure of the goodness of each chromosome in the 

population with regard to the problem at hand. Thus, the 

GA uses quantitative information for guiding the search 

process for finding best possible solution. 

GA makes use of selection, crossover, and mutation 

operators. Each chromosome in the population is 

calculated an associated fitness value to choose 

competitive chromosomes that will form the next 

generation. After applying crossover operator on the 

individuals, GA produces a new population. Mutation 

operation is employed to ensure that a better (possibly 

optimal) solution not existing in the chromosome pool 

can also be randomly generated. Thus, GA carries on by 

creating successive generations of better and better 

individuals by applying these simple operations. Thus, 

finding an optimal solution will be guaranteed if the GA 

algorithm is run for a very long time to create new 

generations [15]. 

4. GA FOR SOLVING CAP/MNU  

In this section, we provide the details of the Genetic 

Algorithm (GA) designed for generating a solution to the 

Covering All PoIs with Minimum Number of UAVs 

Problem (CAP/MNU).  We adopted generic operators of 

GA for the UAV routing problem at hand. Therefore, we 

name the proposed algorithm “GA for covering All PoIs 

with Multiple UAVs” (GA-AP/MU). GA-AP/MU applies 

a greedy approach. In each iteration, GA-AP/MU 

calculates a path for the given UAV, then the next UAV 

route is calculated according to the remaining PoIs. 

Although the solution might not be optimal, it can be 

accepted as a greedy approach in a reasonable time of 

execution. 

The solution construction begins with assuming that all 

UAVs are on the base and the start time is 0. If any of the 

UAVs delays its take off due to time window (TW) of the 

first PoI, it means that UAV does not consume energy 

and, thus, does not decrease its flight range (FR). 

Similarly, if the waiting in air is due to TW of the next 

PoI, then FR is decremented as the amount of waiting 

time. 

GA-AP/MU is designed to achieve two objectives at the 

same time: first, to maximize the number of PoIs in each 

route, and second to minimize the number of assigned 

UAVs. The details of the phases in GA-AP/MU are 

presented below.  

4.1. Fitness Value  

Fitness value of a chromosome in the GA-AP/MU is 

inversely proportional to the route distance calculated 

according to the PoIs stored in the genes of that 

chromosome. The fitness value is evaluated for all 

chromosomes, i.e. UAV route, to find the good solutions. 

The fitness function is given in Eq.1. 

 

Fitness (Route) =             (1) 

   (1) 

Though minimizing the traveled distance is the first goal 

of the proposed GA solution, maximizing the number of 

nodes (PoIs) visited in each route is the second goal in 

order to minimize the number of assigned UAVs. 

Therefore, in the GA-AP/MU, the selection of possible 

PoIs is done considering to use the most of the flight 

range of each UAV and to minimize the waiting times in 

air. Finally, GA is terminated when calculated fitness 

value does not improve during a predefined number of 

generations. The number of generation is determined 

according to given convergence ratio given Table 1. 

4.2 Creating Initial Population 

As seen in Fig.1, a UAV route is encoded into a 

chromosome whose structure is similar to the one 

proposed in [7]. Selected PoIs for a route and their 

planned visit times are stored in genes which constitute 

the chromosome. The visit time of the PoI also includes 

the waiting time in order to control and obey the specified 

ready and due times in TW. 

Initial population of chromosomes is created randomly by 

considering the given constraints of CAP/MNU. 

Afterwards, each chromosome is validated and sorted 

according to the fitness value calculated as explained 
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above. The initial population is then subjected to 

crossover and mutation operations as explained below. 

 

Figure 1. Employed Chromosome Structure  

(reproduced from [7]) 

 

 

4.3 Crossover 

One of the important aspects of the proposed Crossover 

operator is that it should handle different-size 

chromosomes. The main goal of Crossover operator is to 

reach more PoI in a possible shorter path. We applied the 

developed crossover method in our earlier paper [7] into 

the Covering All PoIs with Minimum Number of UAVs 

Problem (CAP/MNU) as explained below. 

Assume that Parent 1 (P1) and Parent 2 (P2) are the two 

chromosomes representing possible UAV routes. As seen 

in Fig.2, P1 is assumed to have 6 genes while P2 has 7 

genes.  Each gene has the same structure described in 

Fig.1. For example, 1st gene of P1 is “PoI23” is standing 

for PoI-23 in this study and “1” below PoI23 is standing 

for Visit Time which shows the time in minutes. Briefly, 

visit time shows the time for accessing that PoI. As the 

Flight Range (FR) is limited to 3 hours in the 

experiments, the visit time of the last gene of any 

chromosome will be smaller than 180 minutes in this 

study. 

Due to the given CAP/MNU constraints, 1-point 

crossover is chosen for crossover implementation [7]. In 

order to achieve this, a cut point is found and decided in 

the chromosome due to crossover ratio. Crossover ratio is 

the ratio of the exchanged genes to the total. Although it 

seems to be an easy operation, the important point for 

making crossover between two chromosomes is finding a 

gene or PoI in common with the other parent. 

If we find the same gene in two elected chromosome, it is 

decided as the cut point and from that PoI crossover is 

executed as described in Fig.1. However, if a common 

gene cannot be found, then another PoI, probably adjacent 

gene in the chromosome, is picked and then checked 

again. If that new PoI can be found in P2, then the 

crossover is done as stated above. Finally, if any common 

PoI in P1 and P2 cannot be found in the whole sequence 

of genes, then crossover cannot be executed for this pair 

and another pair of chromosomes is selected form the 

pool. One of the main advantages of this crossover 

operation is to look for a better solution which might 

possibly have either more PoIs in the path and/or the same 

number of PoIs with a shorter path.  

By the help of crossover operation, the number of PoIs in 

a route can be increased to a possible extent; 7 genes for 

Offspring1 and 6 genes for Offspring2. At the same time, 

crossover operation will give us capability for decreasing 

possible “waiting in air” duration for the rest of the gene 

sequence. The resulting chromosome (Offspring1) will 

most probably have a shorter the path with decreased 

visiting times that originates from P2. 

Figure 2. Crossover Operator 

 

Offspring2 is created in the same way as of Offspring1 by 

exchanging the remaining halves of Parent1 and Parent2 

in Fig.2. Since both offspring now have a different 

ordering of PoIs, they are validated to update their visit 

time according to the UAV flight speed and flight range 

as explained in Section 4.5. If any offspring cannot pass 

the validation test, then a new crossover point is searched. 

If all the possible crossover points fail, this pair of 

chromosomes is ignored and a new pair is selected.  

 

4.4 Mutation 

Mutation operation in the GA-AP/MU has two main 

functionalities. One of them is to work similarly due to 

mutation ratio as in common GA [16, 17]. Briefly, two 

genes are picked randomly in the chromosome, then 

exchanged and swapped to each other’s place in order to 

look for whole search space. The other functionality of 

the GA-AP/MU mutation operator is believed to be more 

useful and valuable for the algorithm. Here, we look for a 

new PoI and try to add one more PoI/gene to 

chromosome. If possible, then the selected new PoI is 

inserted into the correct position in the chromosome. The 

insertion must be done without violating ready/due times 

of any PoI. This process helps to increase the number of 

PoIs in a route.  

In summary, mutation operator either makes a swap of 

two genes or adds a new PoI into the chromosome as 

stated above.  After any mutation operations, the new 

chromosome is validated as discussed below.  

4.5 Validation 

In validation operation, the visit time in the genes of the 

given chromosome is updated according to the flight 

speed and range of UAV along with the time windows of 

the PoIs. Thus, as shown in Fig.2, genes are assigned with 

the updated PoI visiting times. Validation operation is 

carried on for the chromosomes which are undergone the 

crossover or mutation operations, since these operations 
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scramble the order of the genes in the chromosome. If any 

constraint, i.e. flight range, ready-due times of the PoI, is 

found to be violated for the given chromosome, then 

crossover or mutation operation is reverted back as 

discussed above. 

4.6 NEAREST NEIGHBOR (NN) Heuristic for solving 

CAP/MUP 

Nearest Neighbor (NN) heuristic is a simple to use, 

nonetheless effective for specific topologies [27]. In 

generic NN heuristic, one selects the nearest PoI as the 

next one. However, in the present study, there is another 

main constraint that comes up when UAV visits each PoI. 

This problem is called Vehicle Routing Problem with 

Time Windows (VRPTW)[20-26]. As this problem 

classified as a combinatorial optimization and integer 

programming problem [24], we use a greedy approach in 

order to reach a reasonable solution in an acceptable time 

period in this study. 

We adopted the NN method as our first heuristic base 

solution to the CAP/MNU in [19]. In [19], route planning 

begins from the base and continues with the nearest PoI 

complying with the time window (TW) of the to-be-

visited PoI. That is, NN heuristic eliminates the PoIs 

whose ready and due times do not fit to the UAV’s arrival 

time to them. As the final step, the NN method selects the 

nearest PoI to the current one having providing that the 

UAV can have enough remaining flight range (FR) for 

returning to the base.  

However, during simulation experiments in [19], we 

observed that in many cases the nearest PoI might have a 

rather late ready time than that of the second or the third 

closest PoI.  This causes “waiting in air” situation which 

decreases the FR and consequently, the performance. In 

fact, the trade-off between “flight distance” and “waiting 

in air” is believed to be a good metric of greedy 

approach. Therefore, we improved the NN heuristic as 

follows. In the modified NN heuristic, the nearest PoI 

might not be selected if its TW causes long waiting in air. 

Instead, we first select a limited number of the closest 

PoIs to the current location of UAV. Then we can choose 

the PoI in that set with the earliest ready time. In, this 

work, this selection is limited to the closest three PoIs. 

That is, the improved NN heuristic, called the NN 

heuristic for Maximum PoI/ Multiple UAV (NN-

MP/MU), selects one of the three closest PoIs set 

according to the earliest ready time. In [19], it has been 

shown that NN-MP/MU is able to visit more PoIs than 

that of the NN heuristic. This topic can be examined as a 

future work for NN Algorithm as well.  

5. SIMULATION TESTS AND RESULTS 

In this section, GA-AP/MU and NN-MP/MU algorithms 

are compared using different VRPTW benchmark 

problem data files [12] along with various UAV flight 

ranges. 

5.1 Simulation Setup and Parameters 

We have used both R and C data sets described in [12] in 

order to observe the effect of different topologies and 

time windows over the proposed solutions. In the 

experiments, R data sets, R101 thru R110, and C data 

sets, C101 thru C109 are used. The important GA-

AP/MU parameters and their values are given at Table 1 

whereas simulation parameters and their default settings 

are provided at Table 2.  

 

Table 1. Parameters used in GA 

Parameter Value 

Initial Population 400 

Truncate Ratio 50% 

Convergence ratio 95% 

Crossover Type Truncate, 1-point 

Crossover Ratio 0.6 - 0.5 

Mutation ratio 0.01 (1%) 

 

 

For the UAV parameter values, MQ-1B Predator’s 

specifications [18] are taken into consideration. We 

assume that average speed of the UAV can be 130 km/h 

and 165 km/h, and it can fly for 3 hours uninterruptedly. 

Therefore, chosen data sets have been experimented with 

two different speed/range combinations as explained 

below: 

•   Lower Flight Range (LFR): 130 km/h * 3h= 390 km. 

•   Higher Flight Range (HFR): 165 km/h *3h= 495 km. 

 

Table 2. Simulation parameter settings 

Parameter 
Default 

Value 
Range Notes 

Data Set R101 

R101-R112,  

C101-C109 

RC100-

RC108 

29 Different VRPTW 

benchmark problems 

(All 100 series 

problems are taken 

from [12]) 

Number of 

PoIs 
100 100 

First  of the 101 

locations in the data 

set is selected as 

Base, and the rest is 

assumed to be PoIs to 

be visited 

UAV Flight 

Range 
Lower 

Low Range: 

390 km 

High Range: 

495 km. 

MQ-1B Predator 

UAV specs 
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5.2 Results of Experiments  

In the following discussions, we provide the results of 

experiment test according to Flight Range (FR) parameter 

values. The results for the Lower Flight Range (LFR) and 

for the Higher Flight Range (HFR) are presented at Table 

3 and 4 respectively. The performance improvement of 

the proposed GA-AP/MU over the alternative NN-

MP/MU is presented at Table 5. All the test results given 

in the following tables and figures are obtained by taking 

the mean of the results of 10 independent runs. The best 

values in the comparison Tables 3, 4, and 5 are given in 

bold fonts. 

As seen at Table 3, in 24 out of 29 data sets, GA-AP/MU 

employs fewer UAVs than NN-MP/MU. Only for R104 

data set, both methods assign the same number of UAVs. 

Furthermore, with respect to the total distance travelled, 

for all data sets, GA-AP/MU generates shorter routes that 

these of NN-MP/MU. As a result, we can conclude that 

for the Lower Flight Range (LFR), the GA-AP/MU 

algorithm can create routes which employ less number of 

UAVs with shorter flight distance compared to NN-

MP/MU algorithm. 

Similarly, the results for Higher Flight Range (HFR) 

presented in Table 4 show the success of the proposed 

solution over the alternative one. In 22 out of 29  cases, 

GA-AP/MU generates routes which employ fewer 

numbers of UAVs than that of NN-MP/MU. In the 

remaining 7 cases, both algorithms assign the same 

number of UAVs. On the other hand, in terms of the total 

distance travelled, GA-AP/MU produces shorter routes 

than NN-MP/MU in all cases. Thus, as observed for the 

LFR, GA-AP/MU is better than NN-MP/MU considering 

the number of UAVs and the total traveled distance in 

HFR as well. 

Table 3. Dataset Comparison in Lower Flight Range 

(LFR) 

Datasets 

GA-MP/MU NN-MP/MU 
# of 

UAVs for 
all PoI  

Total 
Distance 
travelled 

# of 
UAVs for 

all PoI 

Total 
Distance 
travelled 

R101 8 1953,9 10 2058,6 

R102 8 2057,2 11 2076,1 

R103 7 1873,7 11 2205,0 

R104 7 1594,0 7 1722,7 

R105 6 1685,0 9 2242,0 

R106 6 1827,1 9 1987,1 

R107 6 1806,8 9 1888,8 

R108 6 1566,6 7 1773,0 

R109 5 1570,6 6 1876,9 

R110 7 1788,5 8 1941,0 

R111 7 1741,8 7 2013,3 

R112 5 1341,3 7 2005,4 

C101 14 3390,2 23 3930,2 

C102 13 3102,5 24 3782,8 

C103 12 2723,3 25 3351,3 

C104 9 1978,6 31 3049,2 

C105 11 3108,2 16 3447,3 

C106 12 2903,8 14 3267,5 

C107 11 2842,6 13 3843,0 

C108 9 2299,6 11 3301,2 

C109 8 2175,8 9 3070,2 

RC101 7 1984,5 9 2416,2 

RC102 7 2165,7 9 2400,8 

RC103 7 2018,5 9 2234,8 

RC104 7 1763,8 9 2009,7 

RC105 9 2509,2 10 2568,4 

RC106 8 1866,3 8 2383,0 

RC107 7 1917,8 7 2070,6 

RC108 7 1655,0 7 2159,1 

Table 5 summarizes the performance improvement of 

GA-AP/MU over NN-MP/MU. All positive values show 

the performance increase in percentage. Since NN-

MP/MU could not overcome in any of the instances we 

don’t have any negative values in Table 5. If examined, 

each data set has its own average scores just after finished 

and there is a final row which provides the average 

performance of all data sets used in the experiments. 

Considering the LFR, GA-AP/MU uses about 38% less 

number of UAV with travelling 20% less distances 

compared to NN-MP/MU on the average of all data sets. 

Similarly, for the HFR, GA-AP/MU routes about 44% 

fewer UAVs to travel 24% less distances compared to 

NN-MP/MU on the average considering all the data sets. 

Another observation can be done according to the data 

sets used in experiments. As reported in [12], R problem 

sets are composed of randomly generated geographical 

data whereas in C problem sets, geographical data is 

created to form clusters.  As the PoIs are clustered in C 

data sets, NN-MP/MU algorithm is expected to produce 

better results due to the nature of the NN heuristic [20-

26]. On the contrary, for both FRs, GA-AP/MU 

outperforms NN-MP/MU in C data sets far better than R 

data sets.  In Table 5, the averages according to the data 

set type are also provided. For instance, for HFR, the 

average performance improvement in number of used 

UAVs for R data sets is 24% whereas for C data sets, it is 

about 90%. Likewise, for LFR, GA-AP/MU uses 30% 

less number of UAV for R data sets and 68% less number 

of UAV for C data sets. The performance improvements 

in the total distance travelled supports these observations 

as well.  

Table 4. Dataset Comparison in Higher Flight Range 

(HFR) 

Datasets 

GA-MP/MU NN-MP/MU 
# of 

UAVs for 
all PoI  

Total 
Distance 
travelled 

# of 
UAVs for 

all PoI 

Total 
Distance 
travelled 

R101 7 2136,2 9 2282,4 

R102 7 1879,7 11 2492,3 

R103 7 1938,5 8 2023,8 
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R104 5 1482,9 7 1920,9 

R105 5 1749,6 7 2314,4 

R106 6 1861,4 9 2287,2 

R107 5 1754,7 7 1896,3 

R108 5 1437,0 5 1717,2 

R109 5 1645,1 5 1926,9 

R110 5 1603,5 5 1687,9 

R111 6 1848,3 7 2090,1 

R112 5 1489,8 5 1864,5 

C101 11 3247,1 20 3865,7 

C102 11 3028,1 19 3511,0 

C103 9 2491,0 23 3505,7 

C104 8 1862,0 31 3086,3 

C105 10 3017,3 15 3454,4 

C106 10 3024,9 17 3670,4 

C107 8 2799,8 12 3610,6 

C108 8 2284,6 10 3447,0 

C109 7 2073,2 8 3032,3 

RC101 6 2104,7 7 2497,6 

RC102 6 2372,2 9 2419,0 

RC103 6 2027,3 8 2237,4 

RC104 6 1781,9 6 2651,8 

RC105 8 2427,7 8 2489,1 

RC106 5 1879,1 7 2505,0 

RC107 6 1952,4 7 2447,3 

RC108 6 1825,1 6 2061,7 

Table 5 provides the information about the effect of flight 

range parameter on the performance metrics. As the 

overall averages indicate that with Higher Flight Range, 

GA-AP/MU algorithm outperforms NN-MP/MU far 

better compared to Lower Flight Range, almost this 

difference reaches up to close levels of doubling it. This is 

because of evolving nature of GA-AP/MU algorithm can 

create better performance when the flight range is longer. 

However, in NN-MP/MU, the nearest PoI might be 

degradation in terms of distance and possible waiting 

duration in the air. Because of that reason, it can be 

inferred that NN-MP/MU has a greater local minima 

problem when compared to GA-AP/MU algorithm. 

Table 5. Overall Performance Improvement of GA-

AP/MU over NN-MP/MU 

Datasets 

Lower Flight Range Higher Flight Range 

 UAV 
used 

Distance 
Ratio 

 UAV 
used 

Distance 
Ratio 

R101 25,00% 5,36% 28,57% 6,84% 

R102 37,50% 0,92% 57,14% 32,59% 

R103 57,14% 17,68% 14,29% 4,40% 

R104 0,00% 8,07% 40,00% 29,54% 

R105 50,00% 33,06% 40,00% 32,28% 

R106 50,00% 8,76% 50,00% 22,88% 

R107 50,00% 4,54% 40,00% 8,07% 

R108 16,67% 13,18% 0,00% 19,50% 

R109 20,00% 19,50% 0,00% 17,13% 

R110 14,29% 8,53% 0,00% 5,26% 

R111 0,00% 15,59% 16,67% 13,08% 

R112 40,00% 49,51% 0,00% 25,15% 

R Set Ave 30,05% 15,39% 23,89% 18,06% 
C101 64,29% 15,93% 81,82% 19,05% 

C102 84,62% 21,93% 72,73% 15,95% 

C103 108,33% 23,06% 155,56% 40,73% 

C104 244,44% 54,11% 287,50% 65,75% 

C105 45,45% 10,91% 50,00% 14,49% 

C106 16,67% 12,52% 70,00% 21,34% 

C107 18,18% 35,19% 50,00% 28,96% 

C108 22,22% 43,56% 25,00% 50,88% 

C109 12,50% 41,11% 14,29% 46,26% 

C Set Ave 68,52% 28,70% 89,65% 33,71% 
RC101 28,57% 21,75% 16,67% 18,67% 

RC102 28,57% 10,86% 50,00% 1,97% 

RC103 28,57% 10,72% 33,33% 10,36% 

RC104 28,57% 13,94% 0,00% 48,82% 

RC105 11,11% 2,36% 0,00% 2,53% 

RC106 0,00% 27,69% 40,00% 33,31% 

RC107 0,00% 7,97% 16,67% 25,35% 

RC108 0,00% 30,46% 0,00% 12,96% 

RC Set Ave 15,67% 15,72% 19,58% 19,25% 

Total Ave 38,08% 19,94% 44,38% 23,67% 

 

As a conclusion, one can argue that GA-AP/MU is robust 

to changes in underlying PoI topology, given time 

windows, and flight ranges. 

6. CONCLUSION 

In this work we have extended the UAV routing problem 

previously defined in [7] and [19] by considering multiple 

UAVs with flight range and time window constraints. We 

have designed an iterative Genetic Algorithm (GA) to 

generate routes using fewer numbers of UAVs with less 

total travel distances. The proposed GA is compared with 

the enhanced NN heuristic for different flight ranges, time 

windows and underlying topologies. Considering the 

experiment results, we can argue the success of the 

proposed algorithm over the enhanced NN heuristic.  

 

As a future work, we would like to improve the algorithm 

by considering all the UAVs together which might enable 

us to achieve better optimization. Moreover, we would 

like to extend the constraints by adding service time 

constraints as well. 
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