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Abstract In this work, we propose a Genetic Algorithm
(GA) for effectively scheduling ambulances aftermath
of a disaster. Given the limited number and capacity of
ambulances, we aim to minimize the number of ambulance
tours and the average time to take all injured people to a
hospital. Both of these goals require that the total tour length
of all routes should be minimized as well. This problem
can be considered as an extension of the well-known Ca-
pacitated Vehicle Routing Problem (CVRP). We developed
a Genetic Algorithm (GA) and tested using some of the
CVRP benchmark files. For the possible number of injures
at each location, we define three different scenarios. The
proposed GA aims to minimize the tour lengths of the
ambulances while respecting all real life constraints given in
these scenarios. In order to evaluate the proposed GA, we
also developed a rival method based on the Nearest Neighbor
(NN) heuristic. The results of extensive simulation tests NN
heuristic.

Keywords Genetic Algorithm, Vehicle Routing Problem,
Capacitated Vehicle Routing Problem, Ambulance Routing,
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1 Introduction

The disaster can happen naturally or due to human effects.
These disasters can damage both the existing infrastructures
and human beings at a larger scale. In those situations, effec-
tive logistic operations are hard to be carried out, and, thus,
efficient medical aid may not be provided on time, which, in
turn, causes more losses. Therefore, after a disaster, rescue
and aid operations must be well planned and must be con-
ducted efficiently [1].

In an emergency situation, firstly injured people are to be
transferred to hospitals. To perform this task efficiently, we
have to know the location and number of the injured people,
the number and the capacity of the ambulances since all these
values are the input to the problem solution. After collecting
these inputs, we have to develop a ambulance scheduling so
that injures can be transferred to hospitals in a short time.

The above mentioned problem is related with the Capac-
itated Vehicle Routing Problem (CVRP) [2] which is a type

of Vehicle Routing Problem (VRP). In VRP, there are cos-
tumers and their demands. The aim is to minimize the total
distance for transmitting goods according to the customer de-
mands to all customer location from the depot location by a
vehicle. The vehicle is loaded with goods from the depot,
and the goods are distributed to customers. If the carried
goods are run out off, the vehicle returns to the depot. If
the vehicle’s carrying capacity is limited with a given quan-
tity, the VRP is called Capacitated Vehicle Routing Prob-
lem (CVRP). There are various types of solutions are pro-
posed for CVRP: exact solutions, heuristic, or meta-heuristic
methods. Some researchers propose methods to find the ex-
act solution. However, these methods may be infeasible for
large number of customers because the CVRP is defined as
a non-deterministic polynomial problem (NP-hard). There-
fore, meta-heuristic and heuristic methods are usually imple-
mented to solve CVRP with larger number of customers ef-
ficiently such as Simulated Annealing [3], Particle Swarm
Optimization [4], Ant Colony [5], Genetic Algorithm [6] etc.
For these types of optimization problems, the solution quali-
ties of different meta-heuristics are not found to be drastically
different [7]. In this paper, we opt to use the GA for its ma-
tured methodology and proven robustness [8].

To compare the proposed GA, we also implement a heuris-
tic method called Nearest Neighbor (NN). We tested both so-
lutions using many CVRP benchmarks under different sce-
narios. In each scenario, the number of injured people at each
location is determined randomly using some threshold val-
ues. We simulated all the scenarios and solutions via MAT-
LAB tool. The results indicates the successo the proposed
GA solution over the NN heuristic.

The remainder of this paper is organized as follows. The
related work of the ambulance routing problem is given in
Section 2. The GA and its operators are described in details
in Section 3. In Section 4, the adaptation of NN algorithm
to our problem is presented while the implementation of the
proposed GA is provided in Section 5. The simulation test
results of the solutions are given in Section 6, and finally,
Section 7 covers conclusions and implications.

2 Related Work

Various approaches are proposed to solve the problem of
efficiently delivering injured people to hospital. Gong et. al.
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deal with picking up injured peoples information from dif-
ferent locations and delivering them to the hospital after an
earthquake disaster [9]. Gong et. al. proposed that data fu-
sion center helps to improve dispatching efficiency by de-
creasing travel time to hospital. In their work, the considered
key factors are patient priority, cluster information, and dis-
tance. Thus, the authors assume that ambulance capacity is
only one. However, in this work, we consider the fact that
there can be some ambulances with larger capacities. In an-
other work, Nordin et. al. attempt to solve the problem by
finding the shortest path of the ambulance with the A* algo-
rithm [10]. In the experiments, they used the data collected
at a clinic. However, the calculated path is from a specified
ambulance station to a specified emergency site. Thus, the
researchers do not consider multiple emergency sites when
creating paths. In our study, we consider a specified hospital
but multiple locations of injured people.

While some studies classify the injured people according
to their emergency as being serious or moderate when they
search for an optimal path, some other studies consider risk
properties involved in the given problem [1, 11]. For exam-
ple, Kula [11] uses the medium-integer linear programming
to find the path after classifying locations according to their
risk evaluations aftermath of an earthquake. The problem
resembles Dynamic Vehicle Routing Problem. Talarico [1]
proposes a large neighborhood search meta-heuristic to the
dynamic and uncertainty conditions for ambulance routing
after a disaster. The method categorizes peoples situations
about being serious or slightly serious.

In a previous work, we propose a simplified solution to a
version of this problem [12]. In this work, we extended the
solution by improving crossover operators and conducted ex-
tensive simulation test using CVRP benchmarks. Moreover,
we analyzed the effect of the GA parameter values such as
generation number, population size, and location numbers.

3 Genetic Algorithm

Genetic Algorithm (GA) is a meta-heuristic depends on
the evolutionary approach. Each possible solution is encoded
as a chromosome which consists of genes. GA begins with
solving a problem with an initial population of chromosomes
Each chromosome has a fitness value computed according
to the quality of the encoded solution in itself. By applying
crossover and mutation operators on the existing population,
GA creates a new generation. A selection method picks up
two chromosomes as parents from the population. Crossover
operator exchanges genes of these parents to create two off-
springs. Mutation operator modifies the constructed chromo-
some structure. Until the given termination condition is met,
GA continues to create new generations and improves the
quality of found solution. When the termination condition
is satisfied, GA outputs the best chromosome with the high-
est fitness value as the optimum solution. Below, we provide
the details of the GA operators and procedures.

3.1 Fitness Value

Fitness value is calculated after each new individual is cre-
ated. It evaluates the quality of the generated solution accord-
ing to the given optimization goal. According to the elitism
principle, the individual with the maximum fitness value in
the current population is maintained for the next generation.

3.2 Selection Operator

The selection operator is used to choose two chromosomes
as the parents from the current population to create new indi-
vidual for the next generation by applying crossover or mu-
tation operators.

Some well-known selection operators are tournament se-
lections, roulette wheel selection, and steady-state approach .
The tournament selection helps to find the best individual of
tournament size number individual [13, 14, 15]. For instance,
if the tournament size is 2, which is called binary tournament
size, two individuals are selected randomly, and better one of
the two will be the winner.

The Roulette Wheel Selection is proposed to select the
chromosomes considering their fitness value: Greater the fit-
ness value is, greater the probability of being selected as a
parent is [16, 14].

The steady-state approach ensures that two parents and
two offsprings are compared; the best two chromosomes of
them are selected [17].

3.3 Crossover

Crossover is the main process of the GA to vary the chro-
mosomes from one generation to the next. Two selected par-
ents produce two offsprings according to the given crossover
operator. The main idea is to combine parents to create off-
springs whose fitness values are higher. Some most popu-
lar crossover operators are Edge Recombination Crossover
(ERX) [17, 18, 19], one point or two points crossover [20, 21]
and order crossover [22].

3.4 Mutation

Mutation operator is used to getting rid of the local opti-
mum points. When mutation is not used, the local optimum
solution can be reported as global optimum solution. Swap
[18, 21, 23], insertion [23] and inversion [18, 23] mutations
are well-known mutation types.

4 Adaptation of NN Heuristic

Nearest Neighbor (NN) is a heuristic method which is pro-
posed in Travelling Salesman Problem (TSP) and Vehicle
Routing Problem (VRP) [24]. In NN method, the nearest
unvisited node to the current one is selected as the next node
until all nodes are visited.

To observe the success of the proposed GA solution, we
adopted the NN heuristic as a solution to the problem as fol-
lows. A route starts with the depot (in our case, a hospital),
and then the nearest node (in this case the location of injures)
to the depot is selected. If this node has no injured people, the
node is not visited. Otherwise, until all the injured people are
evacuated, the node is re-visited. Later, if the vehicle has ad-
equate remaining capacity, the next nearest node is selected
and this process continues. Otherwise, the vehicle (ambu-
lance) returns to depot to deliver all picked-up injures. The
process continues until all injured people are transferred to
the hospital.
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Figure 1. Representation of the relation between CVRP and GA
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Figure 2. Representation of the relation between CVRP and the problem

5 Implementation of GA

5.1 Representation of the Problem

The stated problem has similar properties to the CVRP
problems. Each of the customer location is represented as
an injured people location while customers demands are rep-
resented as the number of injured people in each location.
Moreover, the capacity of the vehicle in CVRP corresponds
to the number of the injured people that an ambulance can
take, and the depot is represented as the hospital.

The CVRP can be encoded into GA as follows. The cus-
tomer locations in the CVRP are represented as genes in
chromosomes. That is, in our problem, the locations of in-
jured people are represented in genes by the location num-
ber. Moreover, the routes which consist of these locations
are chromosomes in GA and all possible routes construct the
population. Besides, the total distance among all locations in
a chromosome is defined as the fitness value. By applying the
proposed crossover and mutation operators to the chromo-
somes at each generation, the minimal distance (maximum
fitness value) is found.

5.1.1 Encoding Schema

In the CVRP, the location of customers and depot is rep-
resented with a number. These numbers are represented as
genes in a chromosome while the proposed solution which
consists of these numbers is represented as the chromosome
in GA illustrated in the Figure 1. Moreover, the depot in
CVRP is encoded as hospital and the customers are repre-
sented as the location of injures. Each customer has coordi-
nates (x,y) and demands in CVRP whereas the locations have
the information of coordinates and the number of injures in
our problem shown in Figure 2

5.2 Genetic Algorithm Operations

Below, we explain how we modified the GA to adopt our
problem. In each cycle, a new generation is constructed and
off-springs are created applying crossover and mutation op-
erators. Termination condition is a fixed number for the gen-
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Figure 3. Flowchart of the proposed GA solution

erated generations. The flowchart of the algorithm is given in
Figure 3.

5.2.1 Validation

Each produced chromosome is tested against validation
rule. Basically, a chromosome is valid if the total number
of injures picked-up from the locations as in the order of the
genes does not violate the capacity constraint of ambulance.
That is, when the ambulance is fully loaded with the injures,
it must return to the hospital. In addition, the ambulance does
not return to the hospital when it is not fully occupied un-
less all injures already transferred. When a chromosome is
not validated, it is trimmed such that the ambulance returns
to hospital. In other words, an invalid chromosome can be
fixed by inserting the hospital location into proper order of
the genes. Thus, modified chromosome becomes a valid one.
To solve the validation problem, all 1’s (depots) are removed
from the chromosome and then according to demands, 1’s are
inserted when the capacity is fulled.

5.2.2 Initialization

The initial population is created randomly. After random-
ization, the population must be validated according to process
described above.

5.2.3 Fitness Value

In our problem, fitness value of a chromosome is the total
route distance. The minimum value of the distance is main-
tained for the next generation. The fitness function F can be
formulated as

where (x;,y;) is the coordinate of the gene ¢ and n is the
number of total genes in a chromosome.

5.2.4 Selection

Selection operator is used to determining parents on which
crossover or mutation operator is applied to create off-
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Figure 5. Legalized offspring of a sample of One Point Crossover

springs. In the proposed algorithm, the tournament selection
is applied as described in Section 3.3.

5.2.5 Crossover

In proposed algorithm, we use two different crossover
methods to observe the possible impact of the selected
crossover method. In the first crossover method, a cut point is
selected randomly. The first offspring consists of the first part
of the first parent and the second part of the second parent.
The second off-spring is constructed with remaining parts
of the parents. Then, the constructed off-springs are vali-
dated according to above validation. The following example
demonstrates the process. Assume that selected two parents
are as follows: P1 = (123154161) and P2 = (141532161).
Moreover, the number of injures at locations are (012637).
That is, the first location which is the hospital does not have
any injury, but the location 2 has 1 injury and location 2 has
2 injures. furthermore, assume that the capacity of the ambu-
lance is 4 injures.

After the interim off-spring is constructed as above, until
all demands supply the vehicle visits the depot. In the exam-
ple, in the starting location 1 (hospital), the initial capacity
is 4 and after location 2 is visited, remaining capacity is 3.
Then, location 3 where 2 injures exit is visited. With the re-
maining capacity 1, location 5 is visited and only 1 injured
is picked up. Since capacity is full, the ambulance must re-
turn to the hospital (location 1) and the location 5 must be
re-visited for collecting up the remaining injured people. All
locations of the constructed off-spring are visited and the in-
jures located there are picked up. The remaining locations of
the first part of the second parent are used as explained above.

In the second crossover method, Periere’s crossover is
modified to our problem [26]. First, a sub-route is selected
randomly from first parent and the next point of the first point
of the sub-route is found from second parent. Then, the sub-
route is inserted to the next point and all duplicated points
are removed. Finally, validation process is run over the off-
springs.

The following example shows how the second crossover
method operates. Assume that (5,6) sub-route is selected and

Parent 1 = lal2]slalals|a]lal7z]ala]a]

Interimoffspring 1=| 1|9 |5 [6[s]a1]al2[1]a]7]1]

Parent 2= [1l9lsl1l3]sl2]a]alz]s5]1]

Figure 6. Legalized offspring of a sample of Pereira’s Crossover

9 is the next location to the location 5. The sub-route is in-
serted to the point 9.

In the crossover methods, two offspring are constructed
from two parents. The process explained above is also ap-
plied to the second off-spring as a reverse of the first off-
spring.

5.2.6 Mutation

In the proposed GA, we use swap, insertion and inversion
mutations. In swap mutation, two points are selected ran-
domly and they swap. In insertion mutation, a gene is se-
lected randomly. Then, it is removed from the position and
reinserted to a new position while in inversion mutation, the
points between two positions, which are selected randomly
are reversed. Then, the mutated individuals are validated as
described above.

5.2.7 Elitism

The chromosomes with higher fitness value may be kept
intact by not applying the crossover and mutation operators.
Therefore, these chromosomes are carried to next genera-
tions without any changes. We apply elitism by selecting the
half of best individuals of the new and old generations as the
member of the new generation.

6 Simulation Results

We have implemented the proposed GA and NN solutions
on MATLAB and their experimental results are compared us-
ing well-known CVRP benchmarks. Moreover, we define
three scenarios considering number of injured people at loca-
tions as given in Table 1. In the first scenario, we assume that
disaster has a light damage and each location has less num-
ber of injures than the given capacity of the ambulance. In the
second one, we assume that damage is heavy and the num-
ber of injured people at each location is more than the given
capacity. In the last scenario, we consider a medium damage
in which the locations have medium number of injured peo-
ple such that the number of injures at some location is less
than capacity of ambulance whereas the number of injures at
the rest is more than capacity of ambulance. For each sce-
nario, the numbers of injured people are assigned randomly
and the ambulance capacity is given 4 injures. The parame-
ters and their default values which are used in the simulation
are given in Table 2. Each scenario are executed ten times
and their average values are presented.

In order to compare solutions we define a metric called
Improvement. The improvement defines the decrease in the
total length of the solution generated by the GA over the solu-
tion created by the NN. The improvement metric is calculated
according to the following equation.
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Table 1. Number of injures at each scenario

Scenario # injures at each location

Light Damage 1.. |[Ambulance capacity|
Medium Damage | 1..8

Heavy Damage (|JAmbulance capacity| + 1)..8

Table 2. GA parameters and their values

Parameter Default Value Range
Population Size 200 -
Crossover Probability 1 -
Mutation Probability 0.5 -
Generation number 2000 500-2000
Crossover Operator Periere Periere, One Point
INN| — |GA]
Improvement = TINNITIGA] x 100 2)
2

where | N N| is the total tour length of the solution by Near-
est Neighbour method and |G A| is the total tour length of the
solution value of Genetic Algorithm.

The algorithm is implemented on an Intel Core i5 3.2 Ghz,
4 RAM machine with MATLAB version R2016A. The dura-
tion of the solution changes according the nodes and scenario
of the problem. For instance, when the ulysses-n22-k4 is se-
lected as the benchmark and the considered scenario is light,
the GA solution takes around 2 minutes. On the other hand,
when the number of node is more and the scenario is heavy,
the solution takes longer time. For example, when P-n101-
k4 is selected as the benchmark, the solution generation takes
about 20 minutes on the average.

Below, we present the results of the simulation tests under
two main sets. In the first one, we compare the performance
of the proposed GA and the adapted NN heuristic. Next, we
investigate the proposed GA closer by observing the effect of
setting different values as generation number and implement-
ing different crossover operators.

6.1 Results of GA and NN solutions

We conducted extensive simulation tests to compare the
performance of both solutions. The obtained results of these
tests are presented in Tables 3 and 4, and at Figure 7.

The best values obtained at the experiments for the pro-
posed GA and NN solutions are given in Table 3. For each
scenario, all 10 benchmarks are tested and their results show
that GA has better values on all dataset and all scenarios.
Moreover, Figure 7 shows the success of GA is reported more
clearly.

When we consider the case in which the probable number
of injures at each location is less than the capacity of ambu-
lances (light scenario), we observe in Figure 7 that the im-
provement of the proposed algorithm is better than those of
the other scenarios ( i.e. heavy and medium ).

When all the benchmark files in light scenarios are consid-
ered, the average improvement is about %12.89. On the other
hand, the average improvements of the heavy and medium
scenarios are %6.36 and %10.36, respectively. Similarly, in
the medium hand scenarios the obtained performance results
are better compared to the results observed in heavy scenar-
i0s.

Table 3. Comparison of GA and NN solutions

Benchmark | Scenario | Total Tour Length | Improvement(%)
NN GA

light 250 181 32.01

ulysses- heavy 518 444 15.38
n22-k4 medium 371 309 18.24
Average 21.88
light 35934 30840 15.26

bays-n29-k5 heavy 74051 67666 9.01
medium | 41650 36187 14.04

Average 12.77

light 2220 1971 11.88

A-n38-k5 heavy 5078 4798 5.67
medium 3218 2871 11.40

Average 9.65
light 1529 1351 12.36

A-n40-k5 heavy 3105 2949 5.15
medium 2221 1982 11.37

Average 9.63
light 1943 1733 11.43

E-n51-k6 heavy 4066 3842 5.67
medium 3422 3094 10.07

Average 9.05
light 1999 1781 11.53

P-n55-k10 heavy 4131 3900 5.75
medium 3130 2853 9.26

Average 8.85

light 2109 1918 9.49

P-n60-k10 heavy 4615 4379 5.25
medium 3452 3216 7.08

Average 7.27

light 3419 3128 8.89

B-n64-k9 heavy 7149 6846 433
medium 5301 5036 5.13

Average 6.12

light 2717 2483 9.00
E-n76-k9 heavy 6020 5773 41.89
medium 4366 4151 5.05

Average 6.08

light 3619 3374 7.01

P-n101-k4 heavy 8120 7868 3.15

medium 5526 5167 6.71

Average 5.62

Improvement (%)
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Figure 7. Improvement of the proposed GA for each injured distribution
scenario and benchmark file

In Figure 7, the effect of location numbers in the bench-
mark files on improvements is also observed. The proposed
GA sustains its success over the NN heuristic for all consid-
ered benchmark files. However, as the number of locations is
increased the improvement of the GA algorithm decreases as
shown in Figure 8, considering all scenarios together.
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Average Improvement (%)

Table 5. Comparison of Modified One Point Crossover and Modified
Periere’s Crossover
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Figure 9. Average improvement (%) achieved by two different crossover
operators

Table 4. Total Tour Lengths for various Generation Number

Benchmark | Scenario Total Tour Length
file Iter.500 | TIter.1000 | Iter.1500 | Iter.2000
light 181 181 181 181

ulysses- heavy 444 444 444 444

n22-k4 medium 309 309 309 309
light 30840 30840 30840 30840
bays-n29-k5 heavy 67771 67771 67666 67666
medium 36187 36187 36187 36187

light 1971 1971 1971 1971

A-n38-k5 heavy 4798 4798 4798 4798
medium 2761 2761 2761 2761

light 1351 1351 1351 1351

A-n40-k5 heavy 2949 2949 2949 2949
medium 2127 2127 2127 2127

light 1733 1733 1733 1733

E-n51-k6 heavy 3891 3852 3842 3842
medium 3108 3105 3094 3094

light 1798 1781 1781 1781

P-n55-k10 heavy 3925 3900 3900 3900
medium 2857 2853 2853 2853

light 1918 1918 1918 1918

P-n60-k10 heavy 4396 4384 4384 4379
medium 3264 3227 3216 3216

light 3133 3128 3128 3128

B-n64-k9 heavy 6878 6857 6854 6846
medium 5038 5036 5036 5036

light 2514 2485 2483 2483

E-n76-k9 heavy 5811 5783 5775 5773
medium 4153 4152 4151 4151

light 3410 3380 3375 3374

P-n101-k4 heavy 7998 7944 7883 7868
medium 5254 5193 5173 5167

Total Travelled Distance

Benchmark Scenario One Impro. | Periere | Impro.
file Point (%) (%)
light 181 32.02 181 32.02

ulysses- heavy 444 15.38 444 15.38
n22-k4 medium 309 18.24 309 18.24
light 30904 15.05 30840 15.26

bays-n29-k5 heavy 67722 8.93 67666 9.01
medium | 36900 12.09 36187 14.04

light 1971 11.88 1971 11.88

A-n38-k5 heavy 4798 5.67 4798 5.67
medium 2890 10,74 2871 11.40

light 1351 12.36 1351 12.36

A-n40-k5 heavy 2949 5.15 2949 5.15
medium 2002 10.37 1982 11.37

light 1733 11.43 1733 11.43

E-n51-k6 heavy 3853 5.38 3842 5.67
medium 3098 9.94 3094 10.07

light 1781 11.53 1781 11.53

P-n55-k10 heavy 3915 5.37 3900 5.75
medium 2882 8.25 2853 9.26

light 1920 9.38 1918 9.49

P-n60-k10 heavy 4414 4.45 4379 5.25
medium 3233 6.55 3216 7.08

light 3129 8.86 3128 8.89

B-n64-k9 heavy 6849 4.29 6846 4.33
medium 5040 5.05 5036 5.13

light 2500 8.32 2483 9.00

E-n76-k9 heavy 5791 3.88 5773 4.19
medium 4155 4.95 4151 5.05

light 3382 6.77 3374 7.01

P-n101-k4 heavy 7899 2.76 7868 3.15
medium 5227 5.56 5167 6.71

6.2 Investigating the proposed GA performance

We investigated the impact of selecting different genera-
tion numbers on the solution quality. The results presented
at Table 4 indicate that increasing number of generations can
cause better optimizations for some benchmarks. Especially,
the benchmarks with larger number of locations are more
sensitive to increase in generation number. For example,
for the benchmark P-n101-k4 the total tour length decreases
from 7998 to 7868 for the heavy scenario when the gener-
ation number changes from 500 to 2000. However, for the
benchmarks with relatively less number of locations, we do
not observe the considerable change in the obtained results
as the number of generation increases. We can explain this
observation as follows. The proposed GA can find the opti-
mum solution for small size problems faster (less generation
number), but for the larger size problems the GA needs more
generations to produce better results.

We also compare the success of two type crossovers: One
point crossover and Periere’s crossover. The results of the
simulation tests are depicted in Figure 9 and at Table 5. In
general, we can argue that Periere’s crossover generates bet-
ter results compared to One Point crossover. However, as
seen in Figure 9, the improvement is slight. This means that
crossover type does not affect the quality of the produced so-
lution largely.

7 Conclusions
In this paper, we developed a GA based solution to the ef-

ficient routing of ambulances aftermath a disaster. Via exten-
sive simulation experiments, we observed that the proposed



56 An Optimized Ambulance Dispatching Solution for Rescuing Injures After Disaster

GA generates better solutions than these of the NN method.
In all considered scenarios, the GA method achieved shorter
total tour distances compared to the NN method. There-
fore, we can argue that the GA method is robust against the
changes of the underlying topologies, the number of loca-
tions, and the number of injured people at each locations.
Thus, the GA consistently produces better results even the
important problem parameters vary.

We would like to extend this study for multiple ambulances
and multiple hospital locations as a future study. Thus, we
can apply the proposed solution to the real life problems suc-
cessfully. Moreover, we would like to implement other meta-
heuristics (PSO or ACO) to observe the performance of dif-
ferent meta-heuristics.
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