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In Wireless Sensor Networks, sensor nodes are deployed to mon-
itor and record the changes in their surroundings. The collected
data in the sensor memories is transferred to a remote central
via static or mobile sinks. Because sensors have scarce mem-
ory capacity various challenges occur in gathering the data from
the environment and transferring them to the remote control. For
instance, a sensor’s memory might get completely full with the
sensed data if the sensor can not transfer them on time. Then,
a memory overflow happens which causes all the collected data
to be erased to free the memory for future readings. Therefore,
when a mobile sink (MS) is employed to collect data from the
sensors, the MS has to visit each sensor before any memory over-
flow takes place. In this paper, we study the design of a mobile
sink scheduling algorithm based on the Ant Colony Optimiza-
tion (ACO) meta-heuristic to address this specific issue. The
proposed scheduling algorithm, called Mobile Element Schedul-
ing with Time Sensitive ACO (MES/TSACO), aims to prepare a
schedule for a mobile sink to visit sensors such that the num-
ber of memory overflow incidents is reduced and the amount
of collected data is increased. To test and compare the effec-
tiveness of the MES/TSACO approach, the Minimum Weighted
Sum First (MWSF) heuristic is implemented as an alternative so-
lution. The results obtained from the extensive simulation tests
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show that the MES/TSACO generates schedules with consider-
ably reduced number of overflow incidents and increased amount
of collected data compared to the MWSF heuristic.

Key words: Wireless Sensor Networks, Mobile Sink, Ant Colony Opti-
mization, Scheduling.

1 INTRODUCTION

The main components of a Wireless Sensor Network (WSN) are sensors, base
stations (sinks), and a remote central. Sensors monitor a field and record en-
vironmental changes. In turn, sinks collect data from sensors to upload to
a remote central. Generally, sensors are designed for a single use until they
deplete their batteries. Therefore, sensors need to be cheap in order to be de-
ployed in large numbers in a given area. As a result, the main parts of a sensor
- computation, sensing, and communication units - have very limited capabil-
ities. These limitations create various challenges in WSN applications. For
example, due to limited data memory capacity, sensors cannot store satisfac-
tory large amounts of data for a very long period and, once the memory gets
full, they need to free it up either by transferring the collected data to the
sink or by deleting them entirely. As losing recorded data is not a desired
outcome, gathering data from sensors before their memory overflows is an
important requirement for a WSN application.

The data stored in the sensor memory can be collected by a mobile ele-
ment (ME), or it can be forwarded to a static sink (SS) via a multi-hop wire-
less connection. ME can be either a mobile sink (MS), which has a direct
connection to a remote control, or a mobile collector (MC), which collects
the sensory data to carry to a static sink. Using either ME or SS in WSN
has its own advantages and disadvantages. For instance, in WSN, where sen-
sors route the sensory data to SS, in multi-hop communication among nodes
there could be several issues to be handled by a routing algorithm such as
creating and maintaining routing paths to achieve a lower energy consump-
tion, managing data packets traveling on different paths to SS, guaranteeing
timely delivery of data, minimizing management overhead in communica-
tions, etc. [16]. In general, exploiting sink mobility can extend the network
lifetime by decreasing sensor energy spending in communications as shown
in [5], [11], [12], [18], among others. However, since ME moves relatively
more slowly than the speed of radio signals, data collection is more time-
consuming compared to occasions when SS is used. Thus, the ME approach
is more suitable for delay-tolerant applications [8].
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When an ME is used to collect sensory data, one important issue is to cre-
ate a schedule for visiting the sensors, such that the generated schedule can
satisfy several application-specific performance metrics. For instance, the
generated schedule should prevent or minimize the number of memory over-
flows and maximize the amount of the collected data. This process is referred
to as “Mobile Element Scheduling” (MES) [19]. Unfortunately, creating such
a schedule has been shown to be NP-complete and several heuristics proposed
to prepare an optimal schedule in [10], [19], and [20].

Having been inspired by the behavior of real ants searching around for
food, Colorni et al. introduced the Ant Colony Optimization (ACO) to find
an optimum solution for the Traveling Salesman Problem (TSP) in [2], [3],
and [7]. While ants wander for food, they leave specific pheromone on their
path according to the quality of the located food. Thus, other ants are able
to follow the same path to the food source by detecting the pheromone while
posing their own pheromone on the way as well. As a result, the more com-
monly used paths tend to bear a higher level of pheromone. The authors
exploited this mechanism by simulating artificial ants traversing the problem
space, finding some solutions, and marking the usefulness of the path accord-
ing to the quality of the solution. Thanks to the positive feedback mechanism,
the ACO can converge to an optimal solution. In addition, it has been widely
used to solve a number of combinatorial optimization problems while being
compared with other heuristics [4], [6], [13] among the others.

In this work, we apply the ACO meta-heuristic to create schedules for the
MES problem with better performance results. In our implementation, artifi-
cial ants simulate MS to construct a visiting schedule for sensors. Created by
an ant, each schedule is evaluated according to its success, which is defined
by the number of sensor memory overflows and the amount of the collected
data. Then, according to the success of the produced schedule, ants lay down
pheromones on the edges between the visited sensors. After a designated
number of rounds, it is expected that the ants be able to find an optimum
schedule.

The paper is organized as follows: the related work is presented in Sec-
tion 2. Section 3 provides the details of the WSN model and the proposed
MES algorithm. The simulation model, along with the related tests, are dis-
cussed in Section 4. Finally, in Section 5, the conclusion and future work are
presented.
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2 RELATED WORK

Somasundara et al. introduced the Mobile Element Scheduling (MES) prob-
lem in [19]. After proving that the MES problem is NP-complete, the authors
proposed two heuristics with their variations: Earliest Deadline First (EDF)
and Minimum Weighted Sum First (MWSF). In EDF, MS visits the node with
the closest deadline first. As the authors express the EDF heuristic has an ex-
plicit pitfall since it takes into account only the deadlines but not the time to
get to the sensor node. Therefore, the EDF heuristic could potentially produce
some inefficient schedules. To improve this heuristic, the MWSF heuristic is
designed such that the user can assign two weights, one to the sensor deadline
and the other to the time to get to sensor node, in order to calculate a score for
each node. The weight (α) is set a number between 0 and 1 for the deadline,
and 1-α for the travel time. According to the experiment results, the best per-
formance outcomes are obtained when α is around 0.1. The authors observed
that the MWSF solution constructs schedules, which perform better than the
other proposed heuristics. One drawback of the MWSF heuristic is that MS
has to move back and forth frequently between farthest nodes. In a follow-up
work, the authors extended their work using multiple MSs [20].

In [10], Gu et al. approached the MES problem with a two-phase solu-
tion to reduce the back-and-forth movement behavior. In the first phase, all
sensors are initially partitioned into groups, called bins, with respect to their
similarity in deadlines. Later, the sensors in each bin are further divided into
sub-bins according to their geographical locations. In the second phase, after
preparing a minimum cost schedule for each sub-bin using a Traveling Sales-
man Problem heuristic, all these schedules are concatenated into an overall
schedule.

There are some other works to solve different versions of the MES prob-
lem, e.g. [1], [13] and [14]. In [1], Almi’ani et al. worked on a version of
the MES problem in which the sensory data needs to be delivered to a static
sink by a mobile collector before a given time expires. There are multiple
mobile collectors scheduled to visit each sensor once during a tour. Each tour
of the mobile collectors commences and ends at the same static sink. The au-
thors aimed to minimize the total length of the traveling time of all the tours
providing that only one mobile collector visit any node, and that all delivery
deadlines be satisfied.

In [13] and [14], sensors are assumed to have unlimited data memory
size and, thus, memory overflows are disregarded. Furthermore, it is assumed
that these sensors can communicate with the MS by sending data via multi-
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ple hops along the shortest path. The sensors which are a single-hop away
from the MS can function as relay nodes for distant sensors, which can send
their data to these relay sensors by using intermediate sensors in the multi-
hop communication. In this application scenario, to maximize the amount of
the collected data with minimum power the authors try to optimize the num-
ber of relay sensors and their members. Since more members imply more
message traffic to a relay sensor which consumes more power from the relay
sensor, the authors formulated the problem as selecting relay sensors with an
optimal number of members. An important factor to decide on the relay sen-
sor is the residual energy of candidate sensors. As a solution for this version
of the MES problem, Li and Xiao, proposed to use the Optimal Traversal
Path Taboo Search Algorithm (OTP-TS) [14], whereas Kumar and Thomas
designed a solution based on the ACO [13]. In both works, the main perfor-
mance metrics to improve are the energy efficiency for data gathering and the
total amount of the data collected, whereas, in this work, we aim to prevent
memory overflows along with the increased amount of the collected data. As
a result, the present work differs from Li and Xiao’s and Kumar and Thomas’s
in terms of goals and assumptions.

3 MOBILE ELEMENT SCHEDULING WITH TIME-SENSITIVE ANT
COLONY OPTIMIZATION

The Mobile Element Scheduling with Time Sensitive ACO (MES/TSACO) has
a two-fold objective: collecting data from sensors before the allocated dead-
lines, and collecting the maximum amount of sensor data. Below, the WSN
model and the MES problem are first presented, and then the implementation
details of the proposed solution are provided.

3.1 Problem Definition
It is assumed that a WSN has been deployed for monitoring some environ-
mental changes, for instance heat, light, or mobility. WSN has three impor-
tant components: sensor nodes (SN), a mobile sink (MS), and a remote central
(RC). We assume that the SN and MS locations, sensor sampling rates, sensor
memory capacities and their current states are known to, or can be computed
by, the RC. Thus, RC is able to implement a centralized solution.

Each SN monitors the environment with a fixed sampling rate, stores these
readings in a limited memory, and transfers the recorded data to the MS when-
ever the MS contacts with it. If any SN cannot upload the data to the MS
and the memory gets completely full, SN purges all the data and frees the
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memory, which is called a memory overflow. MS moves freely with a fixed
velocity on the monitored field to collect data from SN via direct (one-hop)
communication according to a schedule determined by RC. While transfer-
ring the collected data to the RC, MS navigates to the next sensor according
to the schedule. The constructed schedule for visiting sensors is expected to
lead to a minimal number of memory overflows and to a maximal amount of
collected data for a given period of time, namely tour time.

Provided below are the details of the MES/TSACO implementation

3.2 The Time-Sensitive ACO
A combinatorial optimization problem can be static or dynamic with respect
to the given characteristics of the problem. In static problems, the underlying
system properties stay the same throughout the problem-solution process. A
typical example of these kinds of problems is the Traveling Salesman Prob-
lem (TSP). In the TSP, there are a number of towns (vertices) connected to
each other by some arcs (edges). Each edge is associated with a cost (dis-
tance). In essence, the solution to a TSP is to construct a minimum distance
circuit passing through each vertex once and only once. Therefore, the cost of
a solution depends on the distances among the towns. These problem charac-
teristics -town locations and distances- do not change during the development
of a solution. On the other hand, in dynamic problems, problem characteris-
tics can be changed over time as a solution is being generated.

The MES problem is an example of dynamic combinatorial optimization
problems. The aim is to visit all, or the maximum number, of nodes before
dynamically changing deadlines expire. The generated schedule is defined
in terms of sequences of sensors as in Fig. 1. Since the duration of a MS
tour time is limited, a solution will constitute finite lengths of states. Then,
a set of candidate solutions can be generated by the permutation of sensors.
However, a set of feasible solutions are unlimited due to the MES problem
definition: each ant does not have to visit all the sensors; any ant can visit the
same sensor more than once; and all the nodes are reachable from any other.

In the TSP, the costs between cities are defined as the distances, which
are fixed. However, the costs between sensor nodes in the MES are based
on the possible number of overflows, which are dependent on the MS visit
time. For example when ant k arrives at sensor A at the time t0, the least cost
can be between A and B as in the schedule T k. However, after some time
when ant k arrives again at sensor A at the time t1, now the costs between
nodes can change due to the elapsed time. Furthermore, sensor memories can
store different amounts of data according to their different sample rates and
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FIGURE 1
A sample schedule showing the dynamic nature of the MES.

capacities, which define various memory overflow periods. Thus, ant k might
select sensor D as it offers the least cost at time t1.

To adapt the dynamic nature of the MES problem, the ACO meta-heuristic
implementation of the pheromone storing and the heuristic calculation is
modified as explained below. In a static problem, the ACO meta-heuristic
stores pheromones to give weight to directed edges from a current node to
the others in order to select the next possible move. The weight is calculated
according to the quality of the previous solution found by an ant. As the prob-
lem is static and the nodes appear on the list only once, their order is sufficient
to relate the success of the previous selections with the future selections. As
discussed above, the MES problem has a different setting. Therefore, the
author introduced the time factor for storing pheromone values and select-
ing the next node by labeling pheromones and edges with a time tag as in
Fig. 2. Thus, the pheromone mechanism becomes Time-Sensitive and can
record once an ant decides to move from node A to node B.

Likewise, the heuristic calculation method is also modified. In the gen-
eral ACO implementation, calculation of heuristic values between nodes is
static, that is, calculation is done at the beginning of the problem and stays
the same during the solution process. However, in our problem, the heuristic
value calculation is dynamic such that any sensor’s time remained to over-
flow is taken into consideration while setting heuristic values dynamically.
Therefore, when an ant refers to some heuristic value between two nodes it
has to be calculated at each time with the current information. The details
about the time-sensitive pheromone and heuristic mechanisms are provided
in Section 3.3.

3.3 The MES/TSACO implementation details
In this implementation of the ACO meta-heuristic, an individual artificial ant
simulates an MS, and its schedule is constructed by incrementally selecting
the next sensor to visit until the designated tour period expires. At the begin-
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ning, each ant is located at the start point s in the monitored field, and the
cost of the tour is zero. The ant selects the next sensor to visit from the list of
candidate sensors according to the current cost. It does not have to return to
the start and throughout its tour, the total overflow number and the amount of
data collected are computed as objective function values. Whenever a tour is
completed, a pheromone value is computed according to the cost of the tour.
Next, these values between the visited sensors are updated with the computed
value labeled with the visit time. Then, ants start their second tour from the
same initial location, and this cycle continues until all the artificial ants com-
plete their predetermined number of rounds. Finally, ACO outputs the best
schedule found so far.

From the above explanation, it is clear that the MES/TSACO requires the
information about the current status of sensor memories in WSN to imple-
ment the proposed centralized solution. Thus, one drawback of the central-
ized solution would be the requirement of communication among sensors and
the RC. However, the amount of communications can be reduced to a min-
imum level if RC can keep track of sensors memory usage according to the
sampling rate. Furthermore, MS can help to sync RC information about sen-
sors by collecting current sensor memory capacities and uploading them to
RC as MS goes by the sensors.

Below provided is a formal characterization of the implementation of the
ACO meta-heuristic to find a minimum-cost feasible solution for the MES
problem.

Problem Representation
Assume that a wireless sensor network be defined by a set of sensor nodes, a
set of edges (L) between all pair nodes (i, j) with distance information (dij),
and the objective function (f ) be inversely based on according to the cost
(c) between sensor nodes which is dynamically associated with the overflow
numbers as described in Section 3.3. Then, the Mobile Element Scheduling
problem (MES) is the problem of finding a minimum-cost schedule to visits
sensor nodes in the network for a designated tour time. Formally, the MES
problem is a maximization problem (S, f , Ω), where S is the set of candidate
solutions, f is the objective function, and Ω is a set of constraints. The ob-
jective function f assigns a cost value c(s, t) to each candidate solution s ∈
S considering the constraints Ω(t). The parameter t indicates that the objec-
tive function, cost value, and the constraints are dynamic and time-dependent.
The ACO meta-heuristic is applied to find a globally optimal feasible solution
s∗ to this maximization problem.

8



Construction Graph

The construction graph is the graph GC = (C,L), where C corresponds to the
set of sensor nodes, and L is the set of connections which fully connect to
GC .

Constraints

The only constraint is that ants use connections li,j ∈ L to visit the sensor
nodes within the specified tour time.

Pheromone trails and heuristic information

The pheromone values between two sensors serves as a long-term memory for
the previous solutions of the ants. Thus, the entire search attempts by all the
ants so far contribute to the pheromone values. The MES problem involves
finding a set of minimum cost path problems for a limited tour time. Since
each connection li,j ∈ L can have many different pheromone trails associated
with it according to an ant’s visit time, each connection li,j is associated with
only one pheromone trail value τi,j,t for each ant visit on time t for sensor
node i. As seen in Fig. 2, a Time-Sensitive pheromone data structure is
used to store the pheromone value of each sensor node for the outgoing edges
based on any ant’s visit time to the sensor.

In the ACO approach, contrary to pheromone value, the heuristic value
provides apriori information regarding the problem case to the ants and each
edge is also assigned a heuristic value ηij . Likewise pheromone values, we
have also modified the heuristic formula by considering dynamic nature of
the problem using the MWSF heuristic suggested in [19]. The heuristic value
ηij of an edge from sensor i to sensor j is set as:

ηi,j =
1

TtOj ∗ dij
(1)

where TtOj is the remaining time to overflow for the sensor j, and dij
is the distance between sensor i to sensor j. As a result, the heuristic value
is dynamic and changes in time as the sensor memory gets full with sensed
data. This formulation assigns higher heuristic values to the sensors, which
have less time to overflow and which are nearer to the current sensor i. ?

? In fact, in simulation tests we have experimented with other heuristics such as prioritizing
only the nearer sensors (nearest first) or only the less time to overflow sensors (deadline first).
However, these heuristics performed far worse than the one in Formula 1.
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FIGURE 2
Each sensor node stores pheromone values for the outgoing edges according to the ant
visit time.
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Solution Construction

A finite set of sensors are given, whereNS is the number of all sensors. Each
ant begins its tour from the same source node s. During a predefined tour
duration d, it moves from one sensor node to the next until the tour duration
completes.

When ant k is located at node i, it chooses the next node j using a proba-
bilistic decision rule which is a function of the visit time t, the local pheromones,
and the heuristic information as in Formula 2 [7].

pki,j,t =
[τi,j,t]

α
[ηi,j ]

β∑
l∈Nk

i
[τi,l,t]

α
[ηi,l]

β
, if j ∈ Nk

i (2)

where α and β are two weight parameters, which affect the relative influ-
ence of the pheromone trail and the heuristic information. Nk

i is the set of
candidate sensors to visit next once ant k arrives at the sensor i at the time
t. Nk

i does not contain either the sensors which are not accessible from the
sensor i before their overflow time, or the sensor i itself. The probability of
choosing all those excluded sensors is assigned as 0.

For the pheromone values, if it is the first time an ant is visiting sensor
i at time t, the pheromone values for all the edges sensor i to its neighbors
in Nk

i will be initialized to τinit as in Formula 3. As seen in Figure 2, the
pheromone values of all the outgoing edges from the sensor i are set an initial
value when an ant arrives at it when t = 15.8. Once an ant completes its tour,
it updates the pheromone values of the visited sensor according to the visit
time t. For example, in the same figure, the sensor i has different pheromone
values for its neighbors when an ant visited it when t = 27.5.

τi,j,t ← τinit, ∀(i, j) ∈ L (3)

After deciding the probability of each neighbor, their probabilities are nor-
malized such that the sum of all the probabilities is 1. Then, we generate a
random number between 0 and 1 to select the next sensor.

According to Formula 2, the probability of choosing a particular edge
(i, j) increases with the value of the associated pheromone trail and of the
heuristic information value.

Each ant k maintains a memory Mk to hold the amount of the collected
data and the number of overflows occurred. This memory is used to compute
the success of the tour (schedule) T k and the amount of pheromone to deposit
on the path.
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Updating Pheromone Trails
After all the ants have constructed their tours, the pheromone trails are up-
dated. This is done by first decreasing the pheromone value on all the edges
using a constant factor ρ, that is pheromone evaporation, implemented by

τi,j,t ← (1− ρ)τi,j,t, ∀(i, j) ∈ L (4)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
The cost c of a generated solution is defined as the number of overflows

(ON ) occurred during an ant’s tour as follows.

c = ON (5)

The objective function f is based on the cost c as below:

f =
1

c+ 1
(6)

Thus, we would like to maximize the objective function f by minimizing
the cost c.

Using the cost of the generated tour, the amount of the additional pheromone
is calculated and added to the edges which the ants have visited during the
tour. The amount of pheromone is set according to the below formula:

τi,j,t ←
1

c+ 1
+ τi,j,t, ∀(i, j) ∈ T k (7)

where T k is the tour traversed by the ant k. As a result of Formula 7, tours
with less cost will cause more pheromone additions on their edges as a posi-
tive feedback.

Regarding the cost function values of the tours, we select the minimum
cost tour for the current round and compare it with the one found so far to
decide the best tour (TBest). Then ants begin a new round.

Selecting the best solution
After all the ants finish a predefined number of rounds, TBest is output as the
MS visit schedule to the WSN simulator to test its accuracy and compare the
performance results.

4 SIMULATION MODEL AND RESULTS

This section presents the evaluation of MES/TSACO with respect to several
performance metrics and the other scheduling heuristic. Below we first dis-
cuss the simulation model by explaining model parameters in details. Then,
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performance metrics are defined to compare the the success of the proposed
algorithm. Next, we explain how to decide the default values of the ACO
parameter values using simulation tests. Finally, the results of various exper-
iments are reported.

4.1 Simulation Model
For simulation experiments, we implemented the TSACO and WSN using
MASON discrete-event multi-agent simulation library [15]. For a given ex-
periment setting, first, the TSACO heuristic is run to find an optimum sched-
ule. Then, the WSN simulator is activated to apply the optimum schedule and
to observe the performance results.

Table 1 summarizes important parameters of the simulation model and
their default values. Below, important parameters are defined along with the
default values.

WSN: It is assumed that the monitored field size is 500x500 meters, and
that the sensors are deployed in a grid topology to cover the monitored field.
MS is initially located at a random node on the field.

Sensors: The number of sensors is 625 as default. Each sensor has 4KB
of data memory and a sensing rate of 1B/sec. At the beginning of simulation
each sensor memory is filled with a random amount of data.

Simulation: In each simulation, MS runs for 20 minutes to collect data. To
find the average performance results, each experiment is executed 40 times.

MS: MS can move freely in the monitored field to visit any sensor accord-
ing to the given schedule with a fixed speed at 40km/h. MS approaches each
sensor to collect data - that is, at a time MS can get connected with only one
sensor. It is assumed that the data transfer time from any sensor to MS is
negligible.

4.2 Performance Metrics
Ideally, MS should collect data from all sensors before any sensor memory
overflows. However, this cannot be always accomplished due to different
parameters, such as memory size, sensing rate, number of sensors, distance
among sensors, MS speed, etc. Also, the scheduling algorithm should be
able to perform with minimal overflows. Apart from this, during a tour, MS
should collect as much data as possible. Motivated by these observations, the
following performance metrics are defined.

• Overflow Number (ON): Number of overflow incidents occurred during
the MS tour.
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Parameters Definition Default Setting
W Width of monitored field 500m
H Height of monitored field 500m
N Number of sensors 625
ST Sensor Topology Grid
TT Tour Time 1200s
ML MS initial location Random
DR Sensing rate 1B/s
MC Memory capacity 4KB
IM Initial memory capacity Random
SP MS speed 40km/h

TABLE 1
The parameters and default values for WSN simulator.

• Collected Data (CD): Total amount of the data collected from sensors
and uploaded to SS by MS at the end of the tour.

Thus, to evaluate the success of our algorithm, MS/TSACO, we imple-
mented another MS scheduling algorithm, the MWSF, introduced in [19]. For
both approaches, all parameter values are identical in the respective simula-
tion experiments. To compare the results of the heuristics, we opt to present
the performance improvement in percentages for the number of overflows and
the collected data metrics as in Formulas 8 and 9, respectively.

ImprovementON =
ONMWSF −ONTSACO

ONMWSF
∗ 100 (8)

ImprovementCD =
CDTSACO − CDMWSF

CDMWSF
∗ 100 (9)

4.3 MES/TSACO Parameter settings
ACO is known to be sensitive to parameter settings to find an optimum so-
lution for a given optimization problem, e.g. [2], [3], [4], [6], [9] and [17].
Therefore, we first conduct a set of experiments by varying the initial values
of the important parameters, namely number of ants, number of ant tours,
and alpha and beta, to observe their effects on the overall success of the pro-
posed scheduling algorithm. After observing the effects of the varying values
of each parameter, the default values of the MES/TSACO to be used in the
comparisons in Sections 4.5, 4.6, and 4.7 are determined.
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The initial values of the ACO parameters, given in Table 2, are selected
similar to those used in related studies such as [10], [16], [19], [20]. The sim-
ulation parameter values given in Table 1 and the MES/TSACO parameters’
initial values in Table 2 are effective in the following experiments whose re-
sults are presented in the Figures 3, 4, 5, and 6 . In these figures, the error
bar indicates 1 standard deviation (σ) from the mean.

Parameters Definition Initial Settings
m Number of ants 20
NR Number of rounds 10
α Relative importance of pheromone 3.0
β Relative importance of heuristic 5.0
τinit Initial level of pheromone 2.0
ρ Evaporation rate 0.01

TABLE 2
The parameters and their initial values for the MES/TSACO heuristic.

Number of ants
For the simulation settings given in Table 1 and 2, different ant populations
are tested. As seen in Fig. 3, as the ant number increases, the quality of the
solution found improves. Using 45 ants instead of 5 improves the overflow
number about 15%. However, upon reaching a certain level, increasing the ant
number does not affect the result more. Therefore, employing 30 ants seems
to be sufficient to reach a better optimal solution with the current settings.

Number of rounds
The number of rounds that each ant should execute is another important pa-
rameter. As the ants execute more iterations, they may make better use of the
pheromone trails to search for higher quality solutions. This expectation is
supported by the experiments as shown in Fig.4. Higher number of rounds
produces higher quality solutions. For example, when 40 iterations are ap-
plied, the number of overflow incidents decreases more than 10% compared
to the case when 5 iterations are used. However, increasing the number of
rounds results in more computation time. Therefore, we choose 30 iterations
to be used as the default value rather than 50 since the overflow numbers are
very close to each other.
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FIGURE 3
Impact of number of ants on overflow.

FIGURE 4
Impact of number of rounds on overflows.
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α and β values
For α and β values, it is observed that the heuristic parameter (β) has much
more influence than the pheromone parameter (α) for locating better solu-
tions as seen in Fig. 5 and 6. This observation is in line with the conclusions
provided by the previous works. For example, Colorni et.al. examined the
α parameter best value for different combinatorial problems and proposed to
use values between 1 and 1.5 as an optimal range in their original works such
as [2], [3], and [4]. Similarly, in [17], it is concluded that the α parameter
value does not have a significant effect on the quality of the generated solu-
tion. Therefore, the common value of α parameter is fixed and set 1 in many
works, such as [2], [16], etc.. Moreover, in some works, e.g. [9], α parame-
ter is removed since setting it to 1 makes effectively the parameter redundant.
Considering the results of above experiment and the previous works, 1 is cho-
sen for the α parameter as the default value.

FIGURE 5
Impact of α value on overflows.

Contrary to α parameter, the heuristic parameter (β) has a significant effect
on the success of the MES/TSACO algorithm. Higher values of β produce
better results. However, since β is an exponential parameter of the real value
heuristic, larger β values increase the computation cost. Since the gain of the
performance results of 10 and 7 is very similar, 7 is opted for as the β default
value.

Determining the default values of the MES/TSACO heuristic parameters
After observing the effect of the important parameters on the success of the
proposed algorithm with the initial settings, we attempt to combine a best
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FIGURE 6
Impact of β value on overflows.

combination of the parameter values to find better results. After conducting
a set of experiments, the parameter values given in Table 3 are chosen as the
default values to be used in the following performance tests.

Parameters Definition Default Settings
m Number of ants 30
NR Number of rounds 30
α Relative importance of pheromone 1.0
β Relative importance of heuristic 7.0
τinit Initial level of pheromone 2.0
ρ Evaporation rate 0.01

TABLE 3
The parameters and their default values for the MES/TSACO heuristic.

4.4 MWSF Parameter setting
The MWSF heuristic has a single parameter which is used to give relative
weights for the sensor deadline and the travel time to the sensor to calculate a
score and prioritize the next visiting node. As the MWSF heuristic is reported
to perform the best when the balancing parameter is set 0.1 in [19], in this
work, the MWSF heuristic is run with the same parameter value as well.

18



4.5 Base Experiment Results

After working on the impact of TSACO parameters on the quality of the pro-
duced solution, various experiments were conducted to compare the MES/TSACO
heuristic with the MWSF one. The obtained results are presented as mean val-
ues (µ) of the 30 time-run simulations along with the standard deviations (σ)
in Tables 4 and 5 when the default values of the simulation parameters in
Table 1 and TSACO parameters in Table 3 are effective.

As seen in Table 4, the MES/TSACO heuristic causes fewer number of
memory overflows compared to the MWSF heuristic for a varying number of
sensors deployed on a fixed size field. However, the improvement in over-
flows changes with the number of sensors deployed inversely. As the de-
ployed sensor number increases, the number of possible schedules increases
exponentially. Thus, the MES/TSACO heuristic can explore only a small por-
tion of them and has a lower chance to converge to an optimal one. On the
other hand, for the current simulation setting, the monitored field has an area
of 500x500 meters. To create a uniformly distributed grid of 900 sensors,
each sensor should be deployed from other neighboring sensors about 17 me-
ters away. It is assumed that the communication range between the MS and
sensors would be longer than this distance in actual applications. Therefore,
in a denser deployment of sensors with a longer range of communication,
actually MS is in fact not to visit each sensor by getting so close to its loca-
tion. As an option it can group sensors, which can be covered by the same
communication range at a single stop. As a result, it is anticipated that the
MES/TSACO heuristic would considerably result in fewer incidents of over-
flows compared to the MWSF heuristic in practice.

TSACO MWSF
N µ σ µ σ ImprovementON
900 93.23 14.64 109.33 12.4 15%
625 32.13 8.50 47.83 10.41 33%
400 6.76 2.48 11.23 3.86 40%
225 2.43 1.25 3.03 1.69 20%
100 0.96 0.88 1.06 0.98 9%

TABLE 4
Average Number (µ) of Overflows caused by TSACO and MWSF heuristics for dif-
ferent numbers of sensors (N).
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Table 5 summarizes the results for the second performance metric. By
collecting data from the sensors before being purged due to an overflow, the
MES/TSACO heuristic is able to gather more data. Aside from this antic-
ipated advantage, even with lower overflow numbers, the schedule created
by the MES/TSACO heuristic results in higher amounts of collected data.
For example, for the 225 sensor deployment experiments, the MES/TSACO
heuristic can prevent about 1 overflow out of 3 caused by the MWSF heuris-
tic (see Table 4) . Since a sensor data memory is assumed to be 4KB in the
simulation setting, if the increase in the amount of data collected according
to the MES/TSACO schedule is due only to the prevented overflows, this
increase is expected to be around 4KB. However, as seen in Table 5, the dif-
ference between the amount of data collected by these two heuristics is more
than 130KB. Therefore, the MES/TSACO heuristic does not only reduce the
number of overflows, but also increases the amount of the collected data con-
siderably.

TSACO MWSF
N µ σ µ σ ImprovementCD
900 721.52 24.31 646.05 24.42 12%
625 688.65 33.05 569.08 19.80 21%
400 603.29 38.89 471.35 20.22 28%
225 487.53 23.06 356.81 15.04 37%
100 266.49 12.44 234.72 10.54 14%

TABLE 5
Average (µ) amount of data in KB collected by TSACO and MWSF heuristics for
different number of sensors (N).

As a result of the base experiments it can be argued that the MES/TSACO
heuristic is capable of producing schedules with fewer overflows and more
collected data compared to the other heuristic. To validate this argument,
we check the statistical significance of the differences between the produced
results by the two algorithms applying the paired-samples T test. The test
shows that the results produced by the MES/TSACO are significantly better
than the ones generated by the MWSF. For example, for the default settings
of the simulation and the ACO parameters, the obtained 30 sample pairs of
both algorithms are used to calculate the value of t as the significance level is
set 0.01 and two-tailed hypothesis is opted out. The value of t is calculated
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as 18.300693 and the power value (P ) is found less than 0.00001. That is,
the difference between the results generated by the heuristics is statistically
significant.

Presented below are the results of the experiments carried out to observe
the effects of the other simulation parameters on the performance metrics.

4.6 Experiment Results For Various Memory Capacities
For different values of memory size, the number of overflow incidents and
the amount of collected data are observed for both heuristics. In Fig. 7 the
improvements realized by the MES/TSACO over the results of the MWSF
heuristic are depicted.

Generally speaking, when the sensors have more memory with the same
sensing rate, MS has more time to visit sensors. The advantage of having
more time to collect data can be viewed in a drop of number of overflows
and in a surge of collected data for both scheduling algorithms. Similarly,
once the memory capacity is reduced and the sensing rate is maintained, the
sensors have less time to get overflowed which decreases the chances of MS
to catch up with all overflow incidents.

In the experiments this expected trend for both heuristics are observed as
seen in Tables 6 and 7. In Tables 6, for the incremented values of MC, both
heuristics cause less memory overflows. For the amount of collected data,
Table 7 confirms that an increase in MC ends up with more collected data.

When two heuristics are compared, it can be observed that the MES/TSACO
exploits the increase in the memory capacity better than the MWSF heuristic
as seen in Fig. 7. The improvements generated by the MES/TSACO on the
collected data are almost in linear with the increase of the memory capacity.
However, the improvement in the number of overflow incidents does not fol-
low a linear pattern. As the memory increased up to 5 KB, the MES/TSACO
heuristic success of minimizing the number of overflows compared to the
MWSF heuristic is increasing. But, then, this improvement begins to de-
crease. It can be argued that, after some memory capacity, in our case 5 KB,
as the time that an overflow takes place is so long that very small number of
sensors face the overflow incident, and thus there is not much room to op-
timize the solution. As an extreme case, when the sensors have unlimited
memory capacity any method would come up with a zero overflow number.
Therefore, the pattern in Fig. 7 depicts this phenomena.

4.7 Experiment Results For Various Tour Durations
MS is assumed to start from an initial location in the monitored field to collect
data from sensors until a designated tour time elapsed. Thus, the heuristics
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TSACO MWSF
MC (KB) µ σ µ σ ImprovementON
1 509.10 9.57 510.40 11.79 0%
2 181.06 9.24 188.73 9.41 4%
3 80.83 12.45 93.86 9.02 14%
4 32.13 8.5 47.83 10.41 33%
5 15.36 5.89 25.36 7.88 39%
6 8.53 3.85 13.7 5.55 38%
7 5.53 2.93 7.83 3.80 29%
8 3.93 2.28 5.46 2.95 28%
9 3.2 2.02 4.33 2.53 26%
10 2.7 1.76 3.46 1.94 22%

TABLE 6
Average (µ) Number of Overflows caused by TSACO and MWSF heuristics for dif-
ferent sensor memory capacities (MC).

TSACO MWSF
MC (KB) µ σ µ σ ImprovementCD
1 226.48 6.81 225.30 6.21 0%
2 375.67 10.76 360.23 13.41 4%
3 523.48 17.60 472.81 12.96 11%
4 688.65 33.05 569.08 19.80 21%
5 841.32 60.09 653.49 30.84 29%
6 1012.75 83.49 728.14 30.88 39%
7 1167.68 96.80 799.32 32.17 46%
8 1342.95 104.73 871.37 32.06 54%
9 1551.36 121.33 942.48 32.42 65%
10 1762.95 137.72 1004.55 33.01 75%

TABLE 7
Average (µ) amount of data in KB collected by TSACO and MWSF heuristics for
different sensor memory capacities (MC).
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FIGURE 7
Impact of memory capacity (MC) on the MES/TSACO improvements for overflow
and collected data metrics.

aim to create a schedule to visit sensors for the specified tour time. A robust
scheduling algorithm should produce similar quality solutions for different
tour durations. As the tour time extends, the number of overflows and the
amount of collected data are expected to be increased. The experiment results
given in Tables 8 and 9 apparently support the expectation.

TSACO MWSF
TT (Sec.) µ σ µ σ ImprovementON
600 22.63 5.48 28.53 6.15 21%
900 28.43 7.22 38.3 8.44 26%
1200 32.13 8.5 47.83 10.41 33%
1500 38.26 10.46 59.16 10.79 35%
1800 41.73 11.70 68.03 9.68 39%

TABLE 8
Average (µ) Number of Overflows caused by TSACO and MWSF heuristics for dif-
ferent tour times (TT ).

When the success of two heuristics are compared, it is observed that for
different tour durations the MES/TSACO always generates better results than
the MWSF heuristic as seen in Fig 8. In general, compared to the alternative
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TSACO MWSF
TT (Sec.) µ σ µ σ ImprovementCD
600 334.89 21.10 285.73 15.91 17%
900 508.43 27.38 427.82 16.52 19%
1200 688.65 33.05 569.08 19.80 21%
1500 847.99 41.12 714.06 19.41 19%
1800 1014.65 60.55 854.50 20.35 19%

TABLE 9
Average (µ) amount of data in KB collected by TSACO and MWSF heuristics for
different tour times (TT ).

heuristic, the MES/TSACO generates schedules causing less overflow num-
bers ranging from 20% to 40%. Similarly, the amount of data collected by
the MES/TSACO schedules is 20% more than that of the MWSF schedules
for the experimented tour times.

One interesting observation is the fact that as the tour duration gets longer,
the MES/TSACO produces better overflow numbers with respect to the MWSF.
The reason for this could be that for a longer tour duration there are more
chances for overflow incidents to happen. Therefore, advantages of using a
more efficient scheduling algorithm can be observed easily. For example, for
a 30-minute tour, the MES/TSACO causes %39 less overflow incidents com-
pared to the MWSF. Consequently, it can be argued that the MES/TSACO is
also capable of successfully scheduling longer tours as well.

5 CONCLUSIONS

This paper introduced a scheduling algorithm based on the Ant Colony Op-
timization (ACO) meta-heuristic for gathering data in Wireless Sensor Net-
works (WSN) with a mobile sink (MS) following a controlled mobility pat-
tern. In WSN, sensors with a limited memory capacity can store the sensed
data to transfer MS for a specified amount of time. MS is tasked to collect
data from the sensors upon visiting them. However, if MS is not able to visit
all sensors in time, memory overflows can occur and all the stored data can
be lost to free the memory.

The proposed mobile element scheduling algorithm (MES), the Time-Sensitive
ACO for Mobile Element Scheduling (MES/TSACO), is based on the ACO
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FIGURE 8
Impact of tour time (TT ) on overflow and collected data metrics.

meta-heuristic. The MES/TSACO aims at minimizing the number of over-
flows and increasing the size of the collected data by making use of controlled
sink mobility efficiently and effectively. For this reason, the ACO pheromone
and heuristic mechanisms are modified to reflect the dynamic nature, and to
meet the requirements, of the MES problem.

The MES/TSACO and a WSN were implemented in a simulation environ-
ment, and to compare the performance results, the MWSF heuristic was also
simulated. Extensive simulation tests were conducted with different simula-
tion parameter values. It is observed that compared to the results produced
by the MWSF heuristic, the TSACO heuristic creates MS schedules which
considerably reduce overflow incidents while increasing the amount of the
collected data for various WSN settings such as sensor numbers, memory
capacities and tour times.

As a future work, the author intends to extend this work by scheduling a
minimum number of multiple MSs, such that there will be no incidents of
overflow at all. Furthermore, it is planed that the scheduling algorithm be
adapted so as to control the MS speed in order to minimize the overflows
with optimum MS energy consumption.

REFERENCES

[1] Khaled Almi’ani, Anastasios Viglas, and Lavy Libman. (2010). Mobile element path
planning for time-constrained data gathering in wireless sensor networks. In Advanced In-

25



formation Networking and Applications (AINA), 2010 24th IEEE International Conference
on, pages 843–850. IEEE.

[2] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. (1991). Distributed optimization
by ant colonies. In Proceedings of the first European conference on artificial life, volume
142, pages 134–142. Paris, France.

[3] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. (1992). An investigation of
some properties of an ant algorithm. In Proceedings of the Parallel Problem Solving from
Nature Conference (PPSN 92), pages 509–520. Elsevier Publishing.

[4] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, and Marco Trubian. (1994). Ant
system for job-shop scheduling. Belgian Journal of Operations Research, Statistics and
Computer Science, 34(1):39–53.

[5] Mario Di Francesco, Sajal K. Das, and Giuseppe Anastasi. (August 2011). Data collection
in wireless sensor networks with mobile elements: A survey. ACM Trans. Sen. Netw.,
8(1):7:1–7:31.

[6] Qiulei Ding, Xiangpei Hu, Lijun Sun, and Yunzeng Wang. (2012). An improved ant colony
optimization and its application to vehicle routing problem with time windows. Neurocom-
puting, 98(0):101 – 107. Bio-inspired computing and applications (LSMS-ICSEE ’ 2010).

[7] Marco Dorigo and Thomas Stutzle. (2004). Ant Colony Optimization. MIT Press.

[8] RJ DSouza and Johny Jose. (2010). Routing approaches in delay tolerant networks: A
survey. International Journal of Computer Applications, 1(17):8–14.

[9] Dorian Gaertner and Keith Clark. (2005). On optimal parameters for ant colony optimiza-
tion algorithms. In Proceedings of the International Conference on Artificial Intelligence
2005, pages 83–89. CSREA Press.
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