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ABSTRACT

Utilization of Unmanned Aerial Vehicles (UAVs) in military and civil operations is getting popular. One of
the challenges in effectively tasking these expensive vehicles is planning the flight routes to monitor the
targets. In this work, we aim to develop an algorithm which produces routing plans for a limited number of
UAVs to cover maximum number of targets considering their flight range.

The proposed solution for this practical optimization problem is designed by modifying the Max-Min Ant
System (MMAS) algorithm.  To evaluate the success of the proposed method, an alternative approach,
based on the Nearest Neighbour (NN) heuristic, has been developed as well. The results showed the success
of the proposed MMAS method by increasing the number of covered targets compared to the solution based
on the NN heuristic.
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1. INTRODUCTION

This document describes, and is written to conform to, author guidelines for the journals of
AIRCC series.  It is prepared in Microsoft Word as a .doc document.  Although other means of
preparation are acceptable, final, camera-ready versions must conform to this layout.  Microsoft
Word terminology is used where appropriate in this document.  Although formatting instructions
may often appear daunting, the simplest approach is to use this template and insert headings and
text into it as appropriate. The importance and the impact of using Unmanned Aerial Vehicles
(UAVs) in military and civil operations are increasing [3,4,5]. One of the issues faced for efficient
usage of UAVs is planning the flight routes to monitor all or the maximum number of the given
targets. This problem is related with the Multiple Travelling Salesman Problem (mTSP) [1] and
the Vehicle Routing Problem (VRP) [6]. In these well-defined problems, it is mostly assumed that
travelling salesmen or vehicles should visit all the targets and the target function is defined as to
find a minimum-distant route. Even, in the constraint versions of the mTSP and VRP, some other
restrictions (visiting time windows, number of depots, etc.) are included; it is still assumed that
there exists enough number of travelling salesmen or vehicles to cover all the given locations.

However, in reality the number and flight range of UAVs might be insufficient to cover all the
targets. As a result, the maximization of the number of targets covered by the limited number of
UAVs can be defined as a new problem. Thus, this article presents a solution for this practical
optimization problem by modifying the Max-Min Ant System (MMAS) algorithm [2]
accordingly.
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In the proposed solution, each ant constructs routes for the given number of UAVs using
pheromone and heuristic information. After each iteration, the solution which covers more targets
with less route distance is selected as the iteration-best solution and the pheromone values of the
edges on that route are increased. According to the termination condition, the algorithm stops and
outputs the best route found so far as the result. To evaluate the success of the proposed method,
another approach, based on the Nearest Neighbour (NN) heuristic, is designed as well. In this
solution, an UAV always select the nearest target to move on until its remaining flight range
urges the UAV to return the base.

Both solutions are implemented using MASON simulation library [7] and compared by extensive
experiments with different parameters and standard TSP data files [9]. The results showed the
success of the proposed MMAS method by increasing the number of covered targets up to 10%
compared to the solution based on the NN heuristic.

2. PROBLEM DEFINITION

We assume that we are given the location of each target along with the base location, the number,
and   flight range of the UAVs. The problem is to create routes for each UAV such that any target
is visited by only one UAV and once, every UAV’s route distance has to be equal or less than the
flight range, and the number of total targets visited by the all UAVs is maximized. Thus the target
function is to maximize the number of targets to be visited by the all UAVs. The constraints are
the flight range and the number of UAVs.

3. MAX-MIN ANT SYSTEM

Stützle and Hoos proposed the Max-Min Ant Colony System (MMAS) as a successful alternative
to Ant System (AS) [8]. In the referenced work, they show the relative success. The basic
difference between the MMAS and AS is the setting up limits on the maximum and minimum
values of the pheromone values that can be compiled on an edge. We apply MMAS to find a
route planning to cover most of the targets as explained below.

4. APPLYING MMAS TO TARGET COVERAGE PROBLEM

Below, we first explain the MMAS basics and then provide the algorithm to generate a solution to
cover maximum number of targets.

2.1. Selecting Next Target

In MMAS, each artificial ant tries to create a route planning for all the UAVs by visiting targets
considering the given problem constraints. Beginning from the base, each ant calculates the
probability of movement from the current location to the all unvisited targets as in the following
formula:
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In Eq (1), i is the current location, j is the possible next location, τij is the pheromone value
between two locations,   ηij is the heuristic value between two locations, β is the coefficient for the
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heuristic parameter, and Mk is the memory for storing list of the targets which either are already
visited by the ant k or cannot be accessible with the remaining flight range. Thus, Pij is the
normalized probability of ant k to move from target i to target j. After calculating the movement
probability for all the targets, a random number between 0 and 1 is generated to select the next
target according to total probabilities of all the possible targets. If all the targets’ probability is 0,
it means that either all the targets are visited or the flight range is not enough to visit any targets
any more. Then, ant returns to the base. Thus, a route for a UAV is completed. The ant begins a
new route for the next UAV with a refreshed flight range. When all the routes are prepared for all
the UAVs an iteration of the ants has been finished. Each ant builds its own route planning
simultaneously by exploiting the experiences of other ants by sensing the pheromone values in the
formula.

4.2. Assigning Initial Pheromone Values

The initial pheromone values (τ0) between all target in the set (H) are initiated to the selected
maximum value (τmax). We calculated the τmax as in Eq.(4).

max0  =
(2)

0 =ij ,   i,j ∈H

(3)

initcp *

1
max = (4)

In Eq. (4), p is the evaporation parameter and cinit is the cost of the initial solution. Cost of a
solution is calculated as follows:

all
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T

T
c −=1 (5)

Thus, if a routing plan can lead to visit all the targets, its cost will be zero. The initial solution is
constructed using Nearest Neighbors heuristic.

The minimum pheromone value is defined as

max
10

min *)1( 
iteration

p−= (6)

As a result of Eq. (6), any edge would have pheromone at least ten times evaporated value of the
maximum pheromone value. Thus, we do not allow unvisited edges get very low pheromone
values which otherwise would decrease their probability.

4.3. Updating Pheromone Values

After completing a tour, each ant calculates the tour cost as given in Eq. (5). Before applying any
pheromone update on the targets, first evaporation should take place. Thus, all the pheromone
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values between all the targets are decreased using the evaporation parameter value (p) as in the
following formula:

ijij p  )1( −= , i,j ∈H (7)

Then, all targets on the route constructed by the ant (Rk) receive an update depending on the cost
of the tour (c):

)
1

(
cijij += , i,j ∈Rk (8)

Eq. (8) dictates that the solutions with less cost, that is covering more targets, leave more
pheromone on the paths to provide positive feedback for the other ants.

4.4. Calculating Heuristic Value

The heuristic value (ηij) between two locations is defined as
ij

ij d

1= , where ijd is the distance

between the locations.

4.5. Algorithm

Using the steps defined above an implementation of the MMAS is given in Table 1. We input the
target list (H), the distances between the targets (dij), the flight range (FR), and the number of
UAVs (UAV) to the algorithm. The algorithm first calculates an initial solution by applying the
NN heuristic. By using the cost of the initial solution, minimum and maximum pheromone values
are set. Then, using the distance matrix, the heuristic values are calculated. After creating a
number of ants (m), each ant builds its solution and updates the pheromone values according to
the cost of the solution. When, a pre-defined number of iterations has been executed algorithm
terminates by outputting the best solution found so far.
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Table 1. Pseudocode for the proposed algorithm.

MaxTarget (H, dij , FR, UAV)
{

UAV_used = 0;
remaining_Range = FR;
RNN=  NN(H, Mij , FR );
init_Pheromone_Values();
init_Heuristic(Mij);
create_Ants(m, base);

while (!end_condition_satisfied)
{

for each ant
{

while (UAV_used<UAV)
{

next = find_Next_Target();
if (base_Reachable(next))
{

move(next);
remaining_Range -= dcurrent,next;

target_Number ++;
}

else
{

move(base);
UAV_used++;
remaining_Range = FR;

}
} //end_while

evoporate_Pheromone();
update_Pheromone();
update_Best_Solution();

}// end_for_each_ant
}

return (Best_Solution);
}

3. SIMULATION MODEL AND RESULTS

We have implemented the proposed MMAS solution using the MASON simulation library (Luke
et al. 2003). The simulation and MMAS parameters with the default values are given in Table 2.
We use several different TSP data files (TSPLIB, 1995) with various flight range and UAV
number to observe the results. Below we report only the preliminary results for the TSP data file
name CH150. The first location in the data file is selected as the base where all the UAVs are
assumed to be located at the beginning and must return to it at the end of the flight. Thus, the total
number of the targets is 149.
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Table 2.  Simulation Parameters and default values.

Parameter Definition Default Value
DF Data File CH150.dat
T Total Number of Targets 149
dij Distance matrix Calculated according to the input

file.
FR Flight range 3
p Pheromone evaporation 0.01

Heuristic effect factor 7

m Number of ants 151
t Iteration number 1000

To determine the flight range (FR) we define a parameter called Critical Distance (CD). The CD
is the distance of the farthest target from the selected base. We test three FRs with respect to the
CD as Case 1: FR = CD, Case 2: FR = CD/2, and Case 3: FR =CD*2.

The main performance metric, Target Coverage (TC), is the ratio of the number of the targets
visited by all the UAVs to the existing targets as formulated below:

100*
all

visited

T

T
TC = (9)

To obtain the results, we run each simulation 10 times and get the averages of these results to find
the mean values.

5.1. Results for Case 1

In the first test, FR is set CD and the results are presented in Table 3. The first column shows the
number of UAVs, the second and the third give the TC results for the NN and MMAS heuristics
respectively.

Table 3.  The target coverage ratios for the heuristics when FR = CD.

UAV TCNN TCMMAS

1 22% 28%
3 45% 63%
5 70% 85%
6 85% 95%
7 90% 99%
9 92% 100%

11 97% 100%
13 100% 100%

As seen in Table 3, the MMAS can generate more target coverage compared to the NN heuristic.
For example, to cover all the targets, the MMAS can need only 9 UAVs whereas NN requires 13.
This results shows that the MMAS can use UAVs much more efficiently to cover most of the
targets with respect to the NN heuristic.
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5.2. Results for Case 2

When the FR is decreased to half of the CD value, the generated results are as in Table 4. As the
FR is not enough to reach some of the targets, increasing the number of UAVs cannot help after
some point. In the experiments, we observe that the MMAS can access all possible targets with
using 11 UAVs where the NN needs 14 to cover the same number of targets.

Table 4.  The target coverage ratios for the heuristics when FR = CD/2.

UAV TCNN TCMMAS

1 11% 12%
3 20% 29%
5 30% 35%
7 34% 38%
9 36% 40%

11 38% 41%
13 40% 41%
14 41% 41%
1 11% 12%

5.3. Results for Case 3

For the last experiment, we set the FR double length of the CD. Since the FR is relatively large,
we expect to cover all the targets with less number of UAVs. The MMAS performs better for any
number of UAVs in this set of experiments as well. For instance, 4 UAVs are successfully routed
by the MMAS to cover all the targets while the NN prepares a routing plan for the same number
of UAVs missing 4% of the targets.

Table 5.  The target coverage ratios for the heuristics when FR = CD*2.

UAV TCNN TCMMAS

1 11% 12%
3 20% 29%
5 30% 35%
7 34% 38%
9 36% 40%

11 38% 41%
13 40% 41%
14 41% 41%
1 11% 12%

3. CONCLUSIONS

In this work, we define a practical problem faced in route planning of a limited number of UAVs
to cover maximum number of the given targets with a pre-defined flight range. We propose to
adapt the MMAS meta-heuristic to solve this problem. After implementing the proposed solution
we compare the results with an alternative heuristic, namely the Nearest Neighbor.



Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014

34

The preliminary results show the effectiveness of the MMAS in route planning. We would like to
extend the work by defining different performance metrics and executing the experiments with
different location set ups.

REFERENCES

[1] Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution
procedures. Omega, 34(3), 209-219.

[2] Dorigo, M., Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer
science, 344(2), 243-278.

[3] Ercan, C., Gencer, C. (2013). Dinamik İnsansız Hava Sistemleri Rota Planlaması Literatür
Araştırması ve İnsansız Hava Sistemleri Çalışma Alanları. Pamukkale Üniversitesi Mühendislik
Bilimleri Dergisi, 19(2), 104-111.

[4] Everaerts, J. (2008). The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping.
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 37, 1187-1192.

[5] Glade, D. (2000). Unmanned aerial vehicles: Implications for military operations. Air Univ Press
Maxwell Afb Al.

[6] Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms.
European Journal of Operational Research, 59(3), 345-358.

[7] Luke, S., Balan, G. C., Panait, L., Cioffi-Revilla, C., & Paus, S. (2003). MASON: A Java multi-agent
simulation library. In Proceedings of Agent 2003 Conference on Challenges in Social Simulation
(Vol. 9).

[8] Stützle, T., & Hoos, H. H. (2000). MAX–MIN ant system. Future generation computer systems,
16(8), 889-914.

[9] TSPLIB, 1995, TSPLIB, [WWW document; retrieved August 2013] URL http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/

Author

Murat KARAKAYA received the B.S.E.E. degree in 1991 from the Turkish Military
Academy, Ankara, Turkey, and the M.S. and Ph. D. degrees in Computer
Engineering from the Bilkent University, Ankara, Turkey in 2000 and 2008,
respectively. From 2000 to 2005, he worked as an instructor and software engineer at
the Turkish Military Academy, Ankara, Turkey. From 2008 to 2012, he worked as an
instructor and software engineer at the Turkish Military School of Electronics,
Communications and Information Systems (MEBS) and Turkish Military Academy
(KHO), Ankara, Turkey. He joined the faculty of Atılım University in 2012 and is currently an Asst.
Professor in the department of Computer Engineering, Ankara, Turkey. His research interests are natural
computing, sensor networks, peer-to-peer networks, and communication protocol design.

http://comopt.ifi.uni-

