MATE 316

Spring 2020

Homework #1

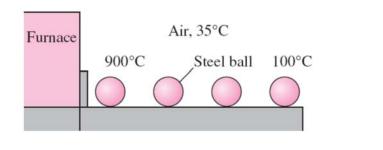
Due February 28th, 2020 (lecture time)

Group submission (up to 3 students per group) is allowed.

Question 2:

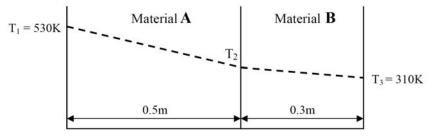
A disk 40 cm in diameter and 5 cm thick is to be cast of pure aluminum in an open mold casting process. The melting temperature of aluminum is 660° C and the pouring temperature will be 710° C.

Assume that the amount of aluminum to be heated will be 5% more than what is needed to fill the mold cavity. <u>Compute the amount of heat that must be added to the metal to heat it to the pouring temperature, starting from a room temperature of 25° C.</u>


Given:

The heat of fusion of AI = 389.3 J/g ρ = 2.70 g/cm³ Heat capacity of solid AI = 1.04 J/g Heat capacity of liquid AI = 1.18 J/g

Question 1:


Carbon steel balls (ρ = 7870 kg/m³) 8 mm in diameter are annealed by heating them first to 900°C in a furnace, and then allowing them to cool slowly to 100°C in ambient air at 35°C. If 2500 balls are to be annealed per hour, determine the total rate of heat transfer (in W) from the balls to the ambient air.

For steel C_p = 37.12 + 0.00617 T J/mole.K

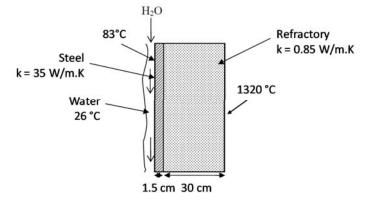
Question 3:

Find the thermal conductivity of B if the steady-state heat flux is 12.6×10^3 [W/m²] and the conductivity of A is 52 [W/mK].

3

1

Question #4


- The heat flux (q) at the surface of an electric heater is 8000 W/m^2 . The heater temperature is 120°C when it is cooled by air at 70°C.
- a) What is the average convective heat transfer coefficient (h) ?
- b) What will the heater temperature be if the power is reduced so that q is 2000 W/m²?

Question 5:

Compute and compare the room temperature thermal diffusivities of aluminum, silver, tungsten and water.

Question #6:

The wall of a blast furnace is water-cooled as shown. Given the inside and outside surface temperatures of 1320° C and 83° C, what is the heat transfer coefficient for the water? The water, itself, is at 26° C. Assume steady-state conditions.

Question #7:

A black thermocouple measures the temperature in a chamber with black walls. If the air around the thermocouple is at 20°C, the walls are at 100°C, and the heat transfer coefficient between the thermocouple and the air is 75 W/m^2K , what temperature will the thermocouple read?

Note:

7

The emissivity is 1 for black bodies. Stefan–Boltzmann constant (σ) is 5.6704x10⁻⁸ Wm⁻²K⁻⁴ Assume that the system is at steady state.

8

6