

Atılım University Department of Metallurgical and Materials Engineering

MATE 316 Solidification Processes

Course Description and Practice									
Code	Course	e Name	Term	Theory + Recit. + Lab.		Credits	ECTS		
MATE 316	Solidification Pro	ocesses	6	2	+	0	+ 2	3	5.5
Pre-requisite C	MATE 202								
Course Type	Compulsory	Language of the	Course		Engl	lish			

Course Catalogue Description

Basics of heat transfer, structure of liquid metals, Solidification of pure metals. Solidification of binary alloys, constitutional undercooling, distribution coefficient, plane front and dendritic solidification, rate of solidification, micro and macrostructure development, segregation, porosity formation, solidification of cast iron, single crystal growth, zone refining, rapid solidification, introduction to casting technologies

	• To introduce the students of Metallurgical and Materials Engineering to the principles of
Course	solidification and applications of the knowledge to industries as it is the most important
Objectives	processing route for materials by emphasizing the interrelationship of properties, structure and
	processing.

Course Book	<i>Phase Transformations in Metals and Alloys</i> , 3 rd Edition, David A. Porter, Kenneth E. Easterling and Mohamed Sherif, CRC (2009) + Lecture Notes
Other Sources	 Solidification, 1st ed., J. Dantzig and M.Rappaz, EPFL Press, (2009) Solidification Processing, M.C. Flemings, McGraw-Hill, 1974 Fundamentals of Metal Casting, Richard A. Flinn, Addison-Wesley Publishing Company, 1963 Solidification and Casting, B. Cantor and K. O'Reilly, IOP, 2003 Fundamentals of Physical Metallurgy, John D. Verhoeven, Wiley (1975) The Science and Engineering of Materials, D.R. Askeland, P.P. Fulay, W.J. Wright, CL-Engineering (2011)

Covered Topics

- Introduction (5 h.)

 a. Thermodynamics Review
 b. Heat Transfer & Thermal Properties
 - c. Structure of Liquid Metals & Viscosity
- Solidification of Pure Metals (5 h.)
- Midterm I
- Alloy Solidification (12 h.)
- Solidification of Ingots and Castings (9 h.)

- Solidification of Cast Iron (3 h.)
- Midterm II
- Miscellaneous Topics in Solidification (5 h.)

 a. Solidification Structure Control
 b.Single Crystal Growth
 c. Production of Amorphous Metallic Materials
 d.Solidification Modeling

 Introduction to Casting Technologies (3 h.)
 - Introduction to Casting Technologies (5 n.)
 Student Term Project Presentations (4 h.)
 - Student Term Project Presentations (4 h.)

Attendance Requirement: A first time taker has to attend at least 70% of the lectures.

Grading Policy

Two Midterms (16% each), Final Exam (34%), Term Project Report (8%), Term Project Presentation (8%), Assignments & Quizzes (10%), Attendance & Class Participation (8%)

Contribution to Professional Component	
Mathematics and Basic Sciences	
Basic Occupational Courses (Engineering)	
Expertise/Field Courses (Engineering Design)	X
Courses on Communication and Management Skills (Social Sciences)	

Atılım University Department of Metallurgical and Materials Engineering

Course Learning Outcomes vs. Program Outcomes Correlation Table

		Scale: "5"=very strong; "4"= strong; "3"= medium; "2"=some; "1"= poor; "-"= NA											
	MATE 316 Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CLO1	Understanding of the properties of liquid metals, heat transfer basics and the thermodynamics of solidification	5	5	1	1	1	2	2	2	1	2	1	1
CLO2	Learning the kinetics of solidification, nucleation and growth of solid phases.	5	3	1	1	1	2	2	2	1	2	1	1
CLO3	Learning the solidification behavior of pure metals and alloys; single phase, eutectic and peritectic solidification.	5	4	1	1	1	2	2	2	1	2	1	1
CLO4	Understanding of the development of solidification microstructures, dendritic solidification, macro and microsegregations, porosity formation.	5	4	1	1	1	2	2	2	1	2	1	1
CLO5	Understanding the techniques for solidification structure control, amorphous and single crystal material production; awareness of solidification modelling and simulation.	5	4	1	2	1	2	2	2	1	2	1	1
CLO6	Ability to prepare a term project report and to give an oral presentation on a topic assigned within the scope of the course.	5	5	5	1	5	2	5	5	2	2	1	4

Scale: "5"=very strong; "4"= strong; "3"= medium; "2"=some; "1"= poor; "-"= NA

Metallurgical and Materials Engineering Program Outcomes

PO1	Knowledge in mathematics, science, and Metallurgical and Materials Engineering, and an ability to apply the theoretical and applied knowledge gained in these areas to model and solve complex engineering problems and material systems.
PO2	Understanding of the science and engineering principles regarding the structure, properties, processing, and performance of material systems.
PO3	Ability to detect, identify, formulate, and solve complex engineering problems; ability to select and use appropriate analysis and modeling methods for this purpose.
PO4	Ability to design and select material for a system, component, product or a process under realistic conditions and constraints to meet desired needs; ability to apply modern design and material selection methods for this purpose.
PO5	Ability to select, use and improve the techniques, skills, and modern engineering tools necessary for Metallurgical and Materials Engineering practice; ability to effectively use information technology.
PO6	Ability to design and conduct experiments, collect data, and use statistical and computer methods to analyze and interpret results for the investigation of complex engineering problems or Metallurgical and Materials Engineering specific research subjects.
PO7	Ability to function effectively in self-disciplinary and multidisciplinary teams; ability to work alone.
PO8	Ability to use Turkish to communicate effectively in oral and written means; knowledge of at least one foreign language, ability for effective report writing and understanding written reports, ability to prepare design and production reports, make effective presentations, give and take clear and understandable orders/directions.
PO9	Recognition of the need for, and an ability to engage in, life-long learning; ability to access information, follow developments in science and technology
PO10	Awareness of acting according to ethical principles, awareness of professional and ethical responsibilities; knowledge of standards used in engineering applications.
PO11	Knowledge on business life practices such as project management, risk management, change management; awareness of entrepreneurship, innovation, and sustainable development.
PO12	Recognition of the impact of metallurgical and materials engineering solutions on health, environment and security in global and societal context, recognition of the legal consequences of engineering solutions.

Prepared by: Assist.Prof.Dr.Erkan KONCA	Date: 07.02.2020	Total Pages: 2	Revision: 09