## MATE 313

## Fall 2019

## Homework \# 6

## It is due 5:00 pm on January $\mathbf{2}^{\text {nd }}, 2020$ No late submissions!

## Question 1:

For a plain carbon steel, calculate the minimum possible interlamellar spacing ( $S^{*}$ ) in nm if the bulk free energy change for the eutectoid transformation (austenite to pearlite) is $-16.5 \times 10^{6}$ $\mathrm{J} / \mathrm{m}^{3}$ and the ferrite/cementite interface energy ( $\gamma_{\alpha / \text { नe3c }}$ ) is 0.8 $\mathrm{J} / \mathrm{m}^{2}$ at some temperature. Ignore the density differences.

Hint: The minimum possible interlamellar spacing ( $S^{*}$ ) corresponds to a value where the driving force for bulk transformation is just equal to the total interfacial energy required to create the lamellar structure (i.e. eutectoid product).

## Question \# 2

Consider the pearlite formation in an $\mathrm{Fe}-\mathrm{C}$ alloy with 0.76 wt.\% C. Based on the schematic drawn below, plot the variation of the carbon composition along the lines " 1 " and " 2 " on separate diagrams. Indicate the exact carbon compositions when possible. Assume that pearlite is forming isothermally just below the eutectoid temperature.


## Question \# 2

| Austenite <br> (left) | Austenite <br> (right) |
| :---: | :---: | :---: |

Line 1

| Austenite <br> (left) |  | Austenite <br> (right) |
| :---: | :---: | :---: |

Line 2


## Question \# 3

Discuss the effect of austenite grain size on the TTT curve for a given steel. That is, how does the austenite grain size affect the kinetics of eutectoid transformation? As compared to a steel with smaller austenite grains, does a steel with larger austenite grains require more or less time for the completion of the transformation?

## Question \# 4

An Fe-C alloy containing 1.13 wt \% C has a microstructure consisting of $98 \%$ pearlite and $2 \%$ proeutectoid cementite.
a) Are these the amounts of the constituents to expect if the sample had been slowly cooled from the austenite region?
b) If not, draw a schematic TTT diagram for this steel and show how such a microstructure could be obtained on the diagram.

## Question \# 5

Using appropriate sketches describe the formation mechanisms of upper and lower bainite. Emphasize the difference between the two structures.

## Question \# 6

What are the six differences between martensitic and pearlitic (eutectoid) type transformations in steels?

## Question \# 7

Calculate the maximum movement experienced by atoms during Bain model of FCC-BCT transformation. Take the lattice parameter of austenite as 0.358 nm , and those of martensite as 0.297 nm and 0.286 nm for "c" and "a", respectively.

## Question \# 8

Consider an Fe-C alloy with 0.65 wt. \% C.
a) How many unit cells are present in $1 \mathrm{~mm}^{3}$ of this alloy in the austenite phase?
b) What will be the new volume if $1 \mathrm{~mm}^{3}$ of austenite of this alloy is completely ( $100 \%$ ) transformed to martensite?
c) What is the percent change (increase or decrease) in volume?

Lattice parameter for austenite: $a=0.3555+0.0044^{*} \mathbf{X} n m$
Lattice parameters for martensite:
$c=0.2866+0.0116 * \mathbf{X m}$ and
$a=0.2866-0.0013^{*} \mathbf{X} n m \quad$ where $\mathbf{X}$ is the carbon content in wt. $\%$.

## Question \# 9

Discuss the role of austenite grain size on the martensite formed in steels. Do not hesitate to include sketches to make your point.

## Question \# 10

- In physical metallurgy, martensite is a term used to describe any $\ldots . . . . . . . . . . . . . .$. transformation product,
-While the austenite grain size does not affect the $\qquad$ martensite nuclei in a given volume, it affects the final martensite
-Pseudoelasticity is a mechanical analogue of one-way shape memory effect with the difference that the driving force for the formation and reversion of martensite is $\qquad$ rather than $\qquad$ .
-The rate of a civilian transformation is interface controlled if the product and parent phases have $\qquad$
-. $\qquad$ temperature corresponds to that temperature below which further cooling does not increase the amount of martensite.
- Martensite formed at higher temperatures or slower rates grows by mechanism, while martensite formed at lower temperatures and higher growth rates grows by a $\qquad$ mode.
-The high strength of ausformed steels is thus due to the combined effect of
$\qquad$ and iii)

