Question 1:

MATE 313

Fall 2019

Homework \# 4

Due: November 28th, 2019 (lecture time)

Group submission (up to 3 students per group) is allowed

Estimate the energy (in $\mathrm{J} / \mathrm{m}^{2}$) of a semicoherent (100) interface between FCC Co precipitate and FCC Cu matrix. Ignore the energy of the coherent regions.

Info:
Energy of a dislocation is $\mathbf{T}=\mathbf{G} \mathbf{b}^{\mathbf{2}} / \mathbf{2}$ where G is the shear modulus and b is the Burgers vector.

The lattice parameter of Cu is 0.364 nm and that of (cubic) Co is 0.352 nm . Take G = 45 GPa .

Question 2:

Cu can dissolve in Ag to form a substitutional solid solution. Cu atoms are, however, smaller than Ag atoms and each Cu atom therefore distorts the surrounding Ag lattice, i.e. a coherency strain field effectively exists around each Cu atom. Estimate the misfit strain energy in $\mathrm{kJ} / \mathrm{mol}$.

mol.	Radius $(\mathbf{n m})$	Shear Modulus $(\mathbf{G P a})$
$\mathbf{A g}$	$\mathbf{0 . 1 4 4}$	$\mathbf{2 7 . 8}$
$\mathbf{C u}$	$\mathbf{0 . 1 2 8}$	44.7

Question 3:

An A-B alloy system contains cube shaped β precipitates of almost pure B with a side length "a" of 11 nm . Based on the information given below, determine whether these precipitates have coherent or non-coherent interfaces with the A-rich α matrix. State any assumption you will make.
$\mathrm{a}_{\alpha}($ lattice parameter of $\alpha)=0.143 \mathrm{~nm}$
$a_{\beta}($ lattice parameter of $\beta)=0.151 \mathrm{~nm}$
$\mathrm{Y}_{\text {st }}($ structural contribution to the interfacial energy $)=0.45 \mathrm{~J} / \mathrm{m}^{2}$
μ (shear modulus of the matrix) $=25 \mathrm{GPa}$

Question 4:

In a material, homogeneous nucleation of β phase in α phase is found to occur at an undercooling, $\Delta \mathrm{T}=170^{\circ} \mathrm{C}$.

Given that the α grain boundary has an energy of $0.66 \mathrm{~J} / \mathrm{m}^{2}$ and the α / β interface has an energy of $0.44 \mathrm{~J} / \mathrm{m}^{2}$, at what undercooling will heterogeneous nucleation be observed along the grain boundaries?

Assume that the driving force is proportional to the undercooling ($\Delta \mathrm{Gv} \propto \Delta \mathrm{T}$). Also neglect differences in the density of potential nucleation sites between homogeneous and heterogeneous nucleation.

The formula for the shape factor, $\mathbf{S}(\theta)=0.5(2+\cos \theta)(1-\cos \theta)^{2}$

Question 5:

Assume that a spherical precipitate forms in an age hardening alloy and that the volume-free energy change associated with the formation of a particle is $-7.3 \times 10^{7} \mathrm{~J} / \mathrm{m}^{3}$. The surface energy of the interface between the particle and the matrix is $0.44 \mathrm{~J} / \mathrm{m}^{2}$.
a) Assuming the misfit strain energy to be zero, determine the critical nuclei radius (r^{*}) and critical energy $\left(\Delta G^{*}\right)$ for precipitation.
b) Calculate the number of particles per m^{3} if the precipitates have a total volume fraction of 1.5% and they are of the same size with a radius equal to the twice of the critical radius size.
c) Calculate the total change in free energy due to the formation of all the precipitates in one m^{3}.

Question 6:

For an A-B alloy system with precipitates that are pure element B, a solvus line is described by $\log \left(X_{B}\right)=2.853-2.875 \times 10^{3} / T$, where X_{B} is the composition in atomic $\%$.
What is the growth rate (in $\mu \mathrm{m} / \mathrm{h}$) at $\mathrm{T}=727^{\circ} \mathrm{C}$ for a matrix composition of $X_{0 B}=2.5 \%$ five minutes after the nucleation has taken place?

Assume 1D growth (e.g. of a slab of precipitate nucleated on a grain boundary). The pre-factor and activation energy for the diffusion of B in A are $7.4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and $257.4 \mathrm{~kJ} / \mathrm{mole}$, respectively.

