MATE 313

Fall 2019

Homework # 2

Due: October 17th, 2019

Group submission (up to 3 students per group) is allowed.

Question 1

- a) Compute the radius *r* of an atom <u>that will just fit</u> into one of the <u>tetrahedral interstitial</u> sites in FCC crystal structure in terms of the atomic radius *R* of the host atom.
- b) Do the same computation for a <u>octahedral site</u> in BCC structure.

Question 2:

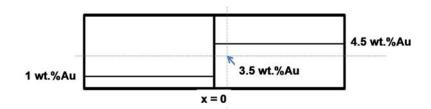
The preexponential (D_0) and activation energy (Q) for the self-diffusion of aluminum are 2.3×10^{-4} m²/s and 144 kJ/mole, respectively. <u>Determine the mean time of stay</u> of an aluminum atom at a lattice site a) at 300°C and b) at 600°C.

Question 3

Consider an atom diffusing by a random walk mechanism in a simple cubic lattice with a lattice parameter of 0.2 nm. It is known that the atom jumps 10⁻⁵ times per second at 300K and 10⁴ times per second at 600K.

- 1) How many times the atom will jump per second at 900K?
- 2) How far the atom will move away from its original position at 900K in one minute?

Question 4


Carbon is allowed to diffuse through a 12 mm thick steel plate of austenitic microstructure. The concentrations of carbon at the two faces are 0.80 and 0.45 kg/m³, which are maintained constant. Find the temperature at which the diffusion flux is 6.3×10^{-11} kg/m²-s.

Question 5:

A diffusion couple composed of two platinum-gold alloys is formed; these alloys have compositions of 99.0 wt% Pt-1.0 wt% Au and 95.5 wt% Pt-4.5 wt% Au.

Determine the time this diffusion couple must be kept at 800° C in order for the composition to be 3.5 wt% Au at the 15 μ m position into the 4.5 wt% Au side of the diffusion couple.

Preexponential and activation energy values for Au diffusion in Pt are 1.3x10⁻⁵m²/s and 252,000 J/mol, respectively.

2