MATE 201

Fall 2019

Homework \# 3

Due date: November 4 ${ }^{\text {th }}, 2019$
(lecture time)

No late submissions!

Group submission (up to 4 students per group) is allowed.

Your homework submission should have a cover page which contains the following information;
your name, student number, course name, homework number and date of submission.

Question 3:

Compute the atomic packing factor for the rock salt crystal structure in which $\mathrm{r}_{\mathrm{C}} / \mathrm{r}_{\mathrm{A}}=\mathbf{0 . 4 1 4}$

Question 4:

Calculate the theoretical density of FeO , given that it has the rock salt crystal structure.

Question 1:

What point defects are possible for MgO as an impurity in $\mathrm{Al}_{2} \mathrm{O}_{3}$? How many Mg^{2+} ions must be added to form each of these defects?

Question 2:

Based on the ionic charge and ionic radii, predict crystal structures for the following materials: (a) NiS, (b) KBr , and (c) CsBr.

Question 5:

Calculate the number of Frenkel defects per cubic centimeter in silver chloride at $300^{\circ} \mathrm{C}$. The energy for defect formation is 1.1 eV , while the density for AgCI is $5.50 \mathrm{~g} / \mathrm{cm}^{3}$ at $300^{\circ} \mathrm{C}$.

$$
N_{f r}=N \exp \left(-\frac{Q_{f r}}{2 k T}\right)
$$

Question 6:

Calculate the number of Frenkel defects per cubic centimeter in silver chloride at $300^{\circ} \mathrm{C}$. The energy for defect formation is 1.1 eV , while the density for AgCl is $5.50 \mathrm{~g} / \mathrm{cm}^{3}$ at $300^{\circ} \mathrm{C}$.

Question 7:

The modulus of elasticity for spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$ having 4 vol\% porosity is 245.3 GPa .
a) Compute the modulus of elasticity for the nonporous material.
b) Compute the modulus of elasticity for 9 vol\% porosity.

Question 8:

a) Compute the repeat unit molecular weight of polypropylene.
b) Compute the number-average molecular weight for a polypropylene for which the degree of polymerization is 21000 .

Question 9:

Molecular weight data for some polymer are tabulated here. Compute
(a) The number average molecular weight, and
(b) The weight-average molecular weight
(c) If it is known that this material's degree of polymerization is 760 , which polymer is this?

Molecular Weight		
Range (g/mol)	xi	wi
$8,000-20,000$	0.05	0.02
$20,000-32,000$	0.15	0.08
$32,000-44,000$	0.21	0.17
$44,000-56,000$	0.28	0.29
$56,000-68,000$	0.18	0.23
$68,000-80,000$	0.10	0.16
$80,000-92,000$	0.03	0.05

