MATE 201 Fall 2019 Homework #1 Due date: October 10th, 2019 (lecture time)

No late submissions!

Group submission (up to 4 students per group) is allowed.

Your homework submission should have a cover page which contains the following information;

your name, student number, course name, homework number and date of submission.

Question 1.

Aluminum foil used for storing food weighs about 55 g/m².

- a) How many aluminum atoms are present in <u>one square</u> <u>centimeter</u> of this foil?
- b) What is the thickness of this foil in microns?

Question 2.

What are the main differences between ionic, covalent, and metallic bonding?

Question 3.

The interatomic spacing versus potential energy curves of two different hypothetical elements, *a* and *b*, are described in the figure below.

a. Which element has the higher melting temperature?

b. Which has the larger interatomic spacing at 0 Kelvin?

c. Which element has the higher coefficient of thermal expansion? Briefly justify your answers.

Question 4.

1

3

Compute the percentage ionic character of the interatomic bond for each of the following compounds: CsF, CdS, and FeO.

% ionic character = $\{1 - \exp[-(0.25)(X_{\rm A} - X_{\rm B})^2]\} \times 100$

Question 5.

Metal M has a density of 8.57 g/cm³ with an atomic radius of 0.143 nm. Find out if M has FCC or BCC crystal structure.

Question 6.

Show that the ideal *c/a ratio is 1.633 for* the HCP crystal structure.

Question 7.

Draw the following within a cubic unit cell. Indicate your choice of origin in each cell.

Question 9. Determine the indices for the planes shown in the hexagonal unit cells below:

7

Question 8.

Within a hexagonal unit cell, sketch the following directions

Question 10.

The figure below shows the atomic arrangements in (111) plane of a FCC crystal. Show the following directions on this figure: $\begin{bmatrix} \bar{1}10 \end{bmatrix} \begin{bmatrix} \bar{1}01 \end{bmatrix} \begin{bmatrix} 0\bar{1}1 \end{bmatrix}$

6