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Abstract— Many popular quadrotor controllers are based 

on PID controllers. This study compares the behavior of a 

quadrotor when its controller is the proportional (P) only, 
proportional (P) and derivative (D), and all terms of the PID 

controller which is tuned by a Particle Swarm Optimization 

(PSO) implementation. A P, PD, and PID controller integrated 

quadrotor model is used with realistic parameters while 

conducting experiments in simulation. Our goal is to find out if 
it is worth to use PID or some of its terms is enough to get a 

stable system. According to the preliminary results of the 

experiments, the statistical difference of results shows that PID 

is better than both P and PD for the given model. 
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I. INTRODUCTION 

The main body of a quadrotor mostly includes a power 
source, 4 motors, 4 motor controllers, 4 propellers, and 1 

control card which includes other necessary modules like 
microcontroller, wireless module, GPS, etc. Using 

quadrotors in relat ively critical missions like transportation 

or surveillance requires them to be reliable. The first step to 
ensuring such reliability is applying a control system to 

correct the attitude (roll, pitch, yaw) of the quadrotor without 
continuous human interaction. However, the parameters of 

the control system is very important since they directly affect 
the stability of the quadrotor. To provide the necessary 

calculations to maintain the system as stable as poss ible, 
there are proposed control system algorithms such as  [1-7]. 

We are focusing the control system algorithm proposed in 

[7] which is called Proportional Integral Derivative (PID). 

PID is a control system algorithm which consists of 3 

terms. The first term is the proportional (P), the second is the 
integral (I) and the third is the derivative (D). Proportional 

term provides the most basic error correction feature which 
outputs some proportion of the calculated error of the 

system. Integral term sums up the error from the start time 

until now and outputs some proportion of that sum. Finally, 
derivative term returns a proportion of the difference 

between current and previous errors of the system. After 
getting the results of these terms, all of them sum up to a 

single number and this number is fed to the actuators of the 
system. The important thing is how much of the output of 

these terms should be used to correct the system without 

overwhelm the actuators and the system.  

In our work, we will compare P, PD and PID in terms of 

time to tune and stability. While tuning these gains Particle 
Swarm Optimization (PSO) is used. PSO should be a very 

suitable candidate for such a mission because of its 
simplicity and relatively low computational costs. 

II. BACKGROUND 

A. Proportional Integral Derivative 

One of the most popular control loop feedback 

mechanism is the PID controller [8]. PID algorithm works 

with two essential inputs. One is the feedback from the 
overall system response and the other one is the set point 

(desired) value. These  inputs are used later to calculate the 
system error. A generalized system diagram with a feedback 

control algorithm is given in Fig. 1. 

The output of the control algorithm feeds the actuators of 

the quadrotor model. In our case, the actuators are the motors 
which provide the necessary angular velocity to the 

propellers to change the quadrotor's stance. 

The overall PID controller consists of 3 terms as shown 
in  (1). 

𝑢(𝑡) = 𝑃(𝑡) + 𝐼(𝑡) + 𝐷(𝑡) (1) 

𝑃(𝑡) is the proportional (P) term, 𝐼(𝑡) is the integral (I) 
term and 𝐷(𝑡)  is the derivative (D) term. There is an 

important reason that why (1) consists of 3 terms. That 

reason is a control system which is made up of only P cannot 
reach a static oscillation free steady state. To increase the 

success of whole controller and cancel out all or most of the 

static steady state oscillations I and D terms are introduced in 
addition to the P term. 

In (1), all terms of PID are in  time domain  and depends 
on system error. The system error is defined as the difference 

between set-point and the measured process variable (actual 
sensor value) as shown in (2). 

𝑒(𝑡) = 𝑦𝑠𝑝
(𝑡) − 𝑦(𝑡) (2) 

𝑦𝑠𝑝 (𝑡)  is set-point value and 𝑦(𝑡)  is sensor value or 

current attitude of the quadrotor. Set-point is the attitude 
value which we desire how the quadrotor is positioned in 3-

dimensional space. 

The first term of PID is the P term which is shown in (3). 

𝑃(𝑡) = 𝐾𝑃 ∗ 𝑒(𝑡) (3) 

The proportion gain is called 𝐾𝑃 . This constant needs to 

be tuned to get proper reactions from the system. 𝑒(𝑡) is the 

system error. Overall, the proportional term is the system 
error multiplied with a gain (proportion). 

The next term is called I term. It is the integral of the 
system error as shown in (4). 

𝐼(𝑡) = 𝐾𝐼 ∗ ∫ 𝑒(𝑡) 𝑑𝑡
𝑡𝑓

𝑡0

 (4) 



The effect of the I term to a system is reducing the steady 

state error [8]. The I term provides output even the system is 
currently stable at steady state because of its dependency on 

the past. The gain of the I term is held in a constant called 𝐾𝐼 . 

This constant also needs to be tuned if the I term is used in 
the controller. 

The final term of PID is the D term. It is shown in (5). 

𝐷(𝑡) = 𝐾𝐷 ∗
𝑑𝑒(𝑡)

𝑑𝑡
 (5) 

The D term is the some proportion of rate of change of 

the system error. In other words derivative of the error, 
multiplied with a constant 𝐾𝐷 . This constant is the gain of the 

D term. The effect of the D term to a system is observed as a 
damping factor. It delays the effect of the P term. As a result, 

the system is damped and always converges to a steady state 

when the 𝐾𝑃  and 𝐾𝐷  terms are positive numbers [8]. 
However, there will be some side effects such as overdamp 

or underdamp, if the constants of the terms are not adjusted 

carefully. Both overdamp and underdamp increase the 
system error until the system reaches to steady state. 

Overdamp occurs if the gain of derivative term is relatively 
high with respect to the gain of the P term. In that state, the 

system will converge very slowly. On the other hand, if the 
constant of the D term is low and the constant of the 

proportional term is relat ively high, then the system is under-

damped. As a result, the system will again converges lately 
to an oscillation free steady state. 

In this paper, we use some combination of terms of the 
PID controller such as P, PD, and PID as our controller. To 

tune the gains we proposed a natural computational method 
called Particle Swarm Optimization (PSO). 

B. Particle Swarm Optimization 

Eberhart and Kennedy proposed  Particle Swarm 

Optimization (PSO) [10]. As the name suggests, there are 
particles which have positions and velocities. The search 

process in PSO is made by moving the particles in the search 

space. Positions of particles are mapped to the solutions of 
the problem and modified by velocity of the particle. The 

velocities of particles are calculated as shown in (6) [11]. 

𝑣𝑖𝑑
(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖𝑑

(𝑡)

+ (𝑐1 ∗ 𝑟𝑎𝑛𝑑 (0, 1)

∗ (𝑝𝐵𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
(𝑡)))

+ (𝑐2 ∗ 𝑟𝑎𝑛𝑑 (0, 1)

∗ (𝑔𝐵𝑒𝑠𝑡𝑖𝑑 − 𝑥 𝑖𝑑
(𝑡))) 

(6) 

𝑣𝑖𝑑 (𝑡 + 1) is the velocity of the ith particle in dimension 

d at time 𝑡 + 1. w is called inertial weight and it is the weight 
of the previous velocity to the current velocity. 𝑐1 and 𝑐2 are 

cognition and social weights of the particles’ velocity. 𝑐1 is 

the weight of personal best and 𝑐2  is the weight of global 

best. 𝑟𝑎𝑛𝑑 (0, 1)  function generates a random number 
between 0 and 1. x is the position of ith particle in  dimension 

d. pBest is the personal best position of that particles 

obtained so far. gBest is the best position that is found in the 
swarm so far. 

Positions of particles are are evaluated by a function 
called fitness function to decide whether or not the found 

solution is acceptable. 

A group of particle which have same fitness function is 

called swarm. Swarms have a me mory called global best 

(gBest). This is the index of a particle which gives the best 
solution obtained so far in the swarm. 

After the velocities are calculated, positions of particles 
are updated as shown in (7). 

𝑥 𝑖𝑑
(𝑡 + 1) = 𝑥 𝑖𝑑 (𝑡) + 𝑣𝑖𝑑 (𝑡) (7) 

𝑣𝑖𝑑 (𝑡) is the velocity of particle i in dimension d at time 
t. 𝑥 𝑖𝑑 (𝑡) is the position of particle i in dimension d at time t. 

𝑥 𝑖𝑑 (𝑡 + 1) is the position of particle i in dimension d at time 

𝑡 + 1. 

A pseudo-code is given in Algorithm 1 which intercepts 

the previously defined equations and methods. 

The algorithm starts with initializing particles. The 

initialization process assigns random velocities and positions 
to all of the particles in that swarm. Then a loop is defined 

which repeats until max iteration count is reached. The 
iteration count of the loop specifies the stop condition of the 

algorithm. After that, positions of the all particles are 

evaluated to decide the personal bests and global best. Then, 
according to personal bests and the global best the new 

velocities and positions are recalculated with some 
randomness (𝑟1 , 𝑟2 ) in them. Then the whole process is 

repeated again until the specified iteration count is reached. 

III. QUADROTOR MODEL 

To apply the previously mentioned control system and 

keep track of the behavior of the quadrotor, it  is necessary to 
derive a dynamic model. In this work, we developed our 

quadrotor model based on the model proposed in [5]. To 
implement the model in MATLAB, we modified the 

implementation presented in [12] to suit our objectives. The 
dynamic model in [5] is summarized as follows: 

𝑥̈ =
1

𝑚
(cos 𝜙 sin 𝜃 cos 𝜓 + sin 𝜙 sin 𝜓)𝑢1 −

𝐾1𝑥̇

𝑚
 (8) 

Algorithm 1 Pseudocode for Particle Swarm Optimization 

P ← InitalizeParticles() 

for i←0 to maxIterations do 

    for all p ∈ P do 

        fp ← fitness(p) 

        if fp is better than fitness(pBest) then 
            pbest ← p 

        end if 

    end for 

    gBest ← best p in P 

    for all p ∈ P do 

        v ← w* v + 𝑐1 * 𝑟1  * (pBest – p) + 𝑐2 * 𝑟2  * (gBest - p) 

        p ← p + v 

    end for 

end for 

 
Fig. 1. Block diagram of a feedback controlled process. 
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1

𝑚
(cos 𝜙 sin 𝜃 sin 𝜓 + sin 𝜙 cos 𝜓)𝑢1 −

𝐾2�̇�

𝑚
 (9) 

�̈� =
1

𝑚
(cos 𝜙 cos 𝜃)𝑢1 − 𝑔 −

𝐾3�̇�

𝑚
 (10) 
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+
𝑙

𝐼𝑧
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𝐼𝑧

�̇� (13) 

The Euler angles [𝜙, 𝜃, 𝜓]  are the roll, p itch and yaw 

respectively. 𝐾𝑖 are the drag coefficients. 𝑢1 is the total force 

applied and calculated as in (14). 

𝑢1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4  (14) 

Ω𝑟  is the angular velocity of the whole quadrotor body 

and can be calculated from the individual angular velocit ies 

of the propellers as shown in (15). 

Ω𝑟 = Ω1 − Ω2 + Ω3 − Ω4 (15) 

Ω𝑖 is the angular velocity of the propeller i. The rolling, 

pitching, and yawing forces are defined as follows 

respectively: 

𝑢2 = (−𝐹2 + 𝐹4 ) (16) 

𝑢3 = (−𝐹1 + 𝐹3 ) (17) 

𝑢4 = 𝑑(−𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 )/𝑏  (18) 

The constants presented in Table I are gathered from 
[12], [13]. 

There are four degrees of freedom (DoF) in our case. 
They are: 

1. Roll (𝜙) 

2. Pitch (𝜃) 

3. Yaw (𝜓) 

4. Altitude (z) 

As a result, since each control algorithm has its own gain, 

there are 4 different control systems. 

IV. AN IMPLEMENTATION OF PSO FOR TUNING GAIN OF THE 

TERMS OF PID 

In the tuning problem, decision variables are the gains of 
the controller terms. In PSO terminology, the array of gains 

is called the position vector of a particle. The position 

vectors of a particle can be shown as (19), (20), and (21) for 
a P, PD, and PID controller respectively. 

𝑃 = [𝐾𝑃
1 𝐾𝑃

2  𝐾𝑃
3  𝐾𝑃

4 ] (19) 

𝑃 = [𝐾𝑃
1  𝐾𝐷

1 𝐾𝑃
2  𝐾𝐷

2  𝐾𝑃
3  𝐾𝐷

3  𝐾𝑃
4  𝐾𝐷

4 ] (20) 

𝑃 = [𝐾𝑃
1 𝐾𝐼

1  𝐾𝐷
1 𝐾𝑃

2  𝐾𝐼
2  𝐾𝐷

2  𝐾𝑃
3  𝐾𝐼

3  𝐾𝐷
3  𝐾𝑃

4  𝐾𝐼
4 𝐾𝐷

4 ] (21) 

Superscripts denote the controller index. For example, 𝐾𝑃
1  

means the proportional gain of the roll controller. 

To evaluate these positions a fitness function is needed. 
The fitness function is sum of mean absolute errors of each 

DoF for some interval of time. For this problem, fitness 
function (in other words cost function) is defined as in (22) 

[13]. 

𝑆𝐸 = ∑ ∫ 𝑒𝑖
2(𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

4

𝑖=1

 (22) 

𝑒𝑖 (𝑡)  is the system error as defined previously in (2). 

Index i is the controller index from 1 to 4 since we have 4 

degrees of freedom (DoF). 

The flow of the algorithm is shown in Fig. 2. Flow starts 

from the PSO by generating random positions and velocities 
for particles. The position of the best particle is given to the 

TABLE I.  QUADROTOR MODEL PARAMETERS. 

Variable  Value  Units 

𝑚 2.0 kg 

𝐼𝑥 = 𝐼𝑦  1.25 Ns
2
/rad 

𝐼𝑧  2.2 Ns
2
/rad 

𝐾1 = 𝐾2 = 𝐾3 0.01 Ns/m 

𝐾4 = 𝐾5 = 𝐾6  0.012 Ns/m 

𝑙 0.20 m 

𝐽𝑟  1 Ns
2
/rad 

𝑏 2 Ns
2 

𝑑 10 N ms
2 

𝑔 10 m/s
2 

 

 

Fig. 2. Tuning flow diagram of the quadrotor controller. 

TABLE III.  𝐾𝑃 VALUES THAT ARE OBTAINED FROM THE DEFAULT 

HYPER-PARAMETER VALUES AT T ABLE II. 

Sln. 𝑲𝑷
𝟏  𝑲𝑷

𝟐  𝑲𝑷
𝟑  𝑲𝑷

𝟒  

1  3.88   2.82   0.32   4.57 

2  3.86   3.42   2.19   3.80 

3  3.15   2.78   0.39   5.24 

4  6.98   4.10   0.50   5.63 

5  4.20   1.68   0.28   5.07 

6  3.71   2.60   2.30   3.79 

7  3.78   2.82   2.81   3.78 

8  3.83   0.77   1.29   5.11 

9  3.36   3.50   0.06   5.34 

10  3.34   3.80   0.41   4.51 

 

TABLE II.  PSO HYPERPARAMETERS. 

Variable  Default Value  Ranges 
Number of particles 10 [5, 10, 15, 20] 

𝑐1 2 - 

𝑐2 2 - 

𝑤 0.9 - 

Iteration count 100 - 

𝑉𝑚𝑎𝑥  2 - 

 



controller as tuned gains. Then, the quadrotor model is run 

for 15 seconds for each gain. Then, the cost is calculated by 
using (22). Finally, the whole process is repeated until a  stop 

condition is satisfied. In our case, the stop condition is 
number of iterations. 

To compute the results, the hyper-parameter values of the 
PSO is chosen by trial and error as Table II. 

V. RESULTS & DISCUSSIONS 

In order to compare the success of P, PD, and PID terms 

as a controller, three separate controller implementations are 
made. Each controller implementation is tuned 10 times with 

the same hyper-parameter values to see if it is consistent. 

After finding the best performing combination of PID terms, 
the number of particles are changed within the range that is 

given in Table II to see the effect of particle count to the 
solution. All tests run in a computer with an Intel i7-7500U 

2.90GHz processor and 16GB of RAM.  

The PSO algorithm outputs 4, 8, and 12 values which are 

the gains of the P, PD, and PID terms respectively. These 

values are formed as the vectors in (19), (20), and (21). Then, 
we input these vectors into the respected quadrotor control 

algorithm. After completing the computations, the quadrotor 
model controller outputs the total errors of each DoF 

according to (22) and generates a flight trajectory in 4 axes. 

The initial conditions are given as follows: 

 The initial angles and height: 𝜙 = 0∘ , 𝜃 = 0∘ , 
𝜓 = 0∘, 𝑍 = 0m 

 The desired angles and height: 𝜙 = −0.2∘ , 

𝜃 = −0.2∘, 𝜓 = 0∘ , 𝑍 = 5m 

 The cost function takes integral from 𝑡0 = 0s to 
𝑡𝑓 = 15s with 𝑑𝑡 = 0.01s. 

A. Comparison of the P, PD, and PID Controllers 

Table III shows the gains found by PSO for a P only 

controller with default hyper-parameter values. Fig. 3 shows 
the square error (SE) versus the number of iterations for each 

individual run. Each value in Table III is given to the 

quadrotor model separately as a candidate solution. Using 
each candidate solution, the quadrotor model calculates the 

respected errors of 4 DoF. This process is repeated for all of 
the remaining controllers. 

According to the generated flight trajectories, none of the 
tuned P only controllers converge. Fig. 6 shows the flight 

trajectory of the P only controller with the min imum square 

error for a 30 seconds flight. The desired conditions are same 
as with the used in tuning process. 

Similarly, Table IV shows the gains found by PSO for 
PD controller. Again this one is also tuned with default 

hyper-parameter values. The desired conditions  are same 
with the P only experiment. Fig. 4 shows the SE curves and 

Fig. 7 shows the flight trajectory of the best one from the 

table. 

All of the above processes for P and PD controllers are 

repeated for the PID controller. SE curves can be seen in Fig. 
5 and flight trajectory for a 30 seconds flight is presented in 

Fig. 8. 

To see which controller setup performs better, mean and 

standard deviation (SD) of the errors are calculated at the 
bottom of tables. One can be accurately deducted the PID 

controller outperforms both P only and PD controller for this 

specific model. With this information in mind, PID controller 
is used in following tests. 

B. Impact of Number of Particles to the Error 

We also want to see if the quality of results are changed 

or not when we  change particle count in the swarm. To 
understand the effects of number of particles to the errors got 

from the quadrotor model and calculation time, we fixed all 
the other hyper-parameter values to default values except 

number of particles. 

It can be seen that average error of the system is slightly 

decreases as the number of particles increases. The increase 

in number of particles also increases the calculation time. 
However, the decrease in average error is much slower than 

the increase in the calculation time. 

C. Discussions 

The impact of number of particles on the observed total 
error is calculated by difference in error divided by 

difference in time. The difference in average error is 4.8564 

TABLE IV.  𝐾𝑃 AND 𝐾𝐷 VALUES THAT ARE OBTAINED FROM THE 

DEFAULT HYPER-PARAMETER VALUES AT T ABLE 2. 

Sln. 𝑲𝑷
𝟏  𝑲𝑫

𝟏  𝑲𝑷
𝟐  𝑲𝑫

𝟐  𝑲𝑷
𝟑  𝑲𝑫

𝟑  𝑲𝑷
𝟒  𝑲𝑫

𝟒  

1 2.98 5.91 5.46 1.65 0.76 3.97 8.09 1.71 

2 2.69 1.01 1.25 0.50 1.12 0.97 8.28 1.74 

3 3.42 2.76 4.85 6.13 3.98 5.80 8.17 1.63 

4 3.46 0.72 0.55 0.72 1.16 4.13 0.04 2.59 

5 1.70 0.75 0.93 0.98 0.60 0.61 0.92 2.68 

6 5.36 2.03 1.69 7.20 3.42 8.12 7.87 1.48 

7 3.16 2.09 1.87 1.52 1.79 0.86 8.03 1.73 
8 1.20 1.78 3.84 0.73 2.21 0.19 7.39 1.94 

9 3.43 0.79 2.40 2.42 1.11 2.27 8.11 1.74 

10 1.85 1.56 3.16 2.71 2.41 0.40 7.68 1.92 

 

TABLE V.  𝐾𝑃, 𝐾𝐼, AND 𝐾𝐷 VALUES THAT ARE OBTAINED FROM THE DEFAULT HYPER-PARAMETER VALUES AT T ABLE 2. 

Sln. 𝑲𝑷
𝟏  𝑲𝑰

𝟏 𝑲𝑫
𝟏  𝑲𝑷

𝟐  𝑲𝑰
𝟐 𝑲𝑫

𝟐  𝑲𝑷
𝟑  𝑲𝑰

𝟑 𝑲𝑫
𝟑  𝑲𝑷

𝟒  𝑲𝑰
𝟒 𝑲𝑫

𝟒  

1 2.72 0.05 3.21 0.44 3.55 3.16 2.57 1.20 0.77 3.85 3.51 1.71 

2 1.44 0.81 1.24 3.66 1.86 2.33 3.21 3.52 2.03 3.90 3.46 1.79 

3 4.01 1.76 3.22 2.24 1.52 1.14 1.93 0.42 1.58 3.21 3.10 1.68 

4 0.65 3.52 3.66 0.64 1.33 1.64 2.71 3.78 2.46 4.03 3.84 1.82 

5 1.39 3.59 3.33 1.12 1.67 1.77 2.33 0.78 1.94 3.51 3.37 1.78 

6 1.74 1.17 1.86 3.59 4.26 1.52 1.43 0.73 4.87 3.26 3.37 1.83 

7 5.07 2.47 2.14 2.57 3.62 1.32 3.55 1.50 2.40 3.85 3.91 1.88 

8 0.75 0.59 4.24 1.96 4.05 3.37 3.37 0.05 3.29 4.53 3.58 1.76 

9 3.83 3.75 3.18 0.27 0.47 1.17 2.02 0.24 1.47 3.96 2.79 1.60 

10 0.54 0.34 2.45 2.50 1.19 2.78 0.67 4.42 2.35 4.51 3.91 1.86 

 



 
Fig. 3. Square error curves of each individual run of P only 

controller. 

 
Fig. 4. Square error curves of each individual run of PD controller. 

 
Fig. 5. Square error curves of each individual run of PID controller. 

 
Fig. 6. Flight trajectory of the best found gains with P  only controller 
for 30 seconds. 

 
Fig. 8. Flight trajectory of the best found gains with PID controller 

for 30 seconds. 

 
Fig. 7. Flight trajectory of the best found gains with PD controller for 

30 seconds. 

between 5 particles and 20 particles. On the other hand, 
difference in time is 78.6589 seconds. We have an error to 

time ratio of 0.0279. The decrease in average error is not 
worth to the increase in time. However, by looking the 

decrease in standard deviation we can say that as the particle 

count increases the accuracy of the results are increasing. 

VI. CONCLUSIONS & FUTURE WORKS 

In this preliminary  work, we analyzed the impact of the 

P, PD, and PID controllers on the quadrotor stability. We 
used a PSO algorithm to optimize the gains of the P, PD, and 

PID controllers. We found that PID controller gives better 

results compared to the results provided by the P and PD 



TABLE VI.  SQUARED ERRORS OF T HE MODEL WITH A P  ONLY 

CONTROLLER 

Sln. φ 

Error 

θ 

Error 
ψ 

Error 
Z 

Error 
Σ 

Error 
1  0.58   0.49   6.32   118.27   125.66 

2  0.76   0.61   0.50   136.13   138.00 

3  1.17   0.90   6.85   113.24   122.15 

4  0.71   1.60   12.59   126.02   140.92 
5  1.37   2.80   12.38   116.63   133.18 

6  0.32   0.50   0.06   145.60   146.49 

7  0.37   0.52   0.06   151.43   152.39 

8  1.38   1.87   5.09   127.37   135.72 

9  1.35   1.30   5.35   104.71   112.71 

10  0.72   0.30   3.16   121.57   125.76 

Mean  0.88   1.09   5.24   126.10   133.30 

SD  0.39   0.76   4.35   13.85   11.35 

 

TABLE VII.  SQUARED ERRORS OF T HE MODEL WITH A PD 

CONTROLLER 

Sln. φ 

Error 

θ 

Error 

ψ 

Error 

Z 

Error 

Σ 

Error 
1  0.00   0.03   0.10   35.92   36.05 

2  0.06   0.03   0.09   35.24   35.41 

3  0.02   0.00   0.00   35.40   35.43 

4  0.03   0.02   0.01   306.70   306.77 

5  0.03   0.04   0.01   309.90   309.98 

6  0.02   0.00   0.01   36.44   36.47 

7  0.02   0.01   0.03   35.68   35.75 

8  0.03   0.10   0.25   37.37   37.75 

9  0.04   0.01   0.01   35.50   35.56 

10  0.01   0.02   0.05   36.70   36.79 

Mean  0.03   0.03   0.06   90.49   90.59 

SD  0.01   0.03   0.07   108.91   108.89 

 

TABLE VIII.  SQUARED ERRORS OF T HE MODEL WITH A PID 

CONTROLLER 

Sln. φ 

Error 

θ 

Error 
ψ 

Error 
Z 

Error 
Σ 

Error 
1  0.00   0.03   0.00   8.24   8.27 

2  0.01   0.01   0.00   7.85   7.87 

3  0.01   0.03   0.01   8.40   8.44 

4  0.15   0.03   0.02   8.42   8.62 

5  0.06   0.02   0.03   8.44   8.55 

6  0.02   0.02   0.00   7.67   7.71 

7  0.01   0.03   0.00   7.30   7.34 

8  0.01   0.01   0.00   8.26   8.29 

9  0.01   0.04   0.00   8.86   8.90 

10  0.01   0.01   0.01   7.73   7.75 

Mean  0.03   0.02   0.01   8.12   8.18 

SD  0.04   0.01   0.01   0.44   0.46 

 

TABLE IX.  AVERAGES, STANDARD DEVIATIONS OF ERRORS FOR 

DIFFERENT PARTICLE COUNTS. THE COMPUTATION TIMES ARE ALSO 

GIVEN. 

 5 Part. 10 Part. 15 Part. 20 Part. 
Mean 11.55 9.90 7.68 7.64 

SD 8.45 4.15 0.62 0.51 

Time (s) 144.67 280.99 428.51 571.57 

 

controllers. In fact, P only controller did not converge at any 

point in time at all. The most affected DoF was the altitude 
and the least affected one was the yaw. 

In future, we are planning shortening the computation 
time so that it will be an acceptable solution to an online 

tuning application. 
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