
978-1-7281-3992-0/19/$31.00 ©2019 IEEE

Effect of PSO Tuned P, PD, and PID Controllers on

the Stability of a Quadrotor

Tolga Üstünkök

Department of Software Engineering

Atilim University
Ankara, Turkey

tolga.ustunkok@atilim.edu.tr

Murat Karakaya

Department of Computer Engineering

Atilim University
Ankara, Turkey

murat.karakaya@atilim.edu.tr

Abstract— Many popular quadrotor controllers are based

on PID controllers. This study compares the behavior of a

quadrotor when its controller is the proportional (P) only,
proportional (P) and derivative (D), and all terms of the PID

controller which is tuned by a Particle Swarm Optimization

(PSO) implementation. A P, PD, and PID controller integrated

quadrotor model is used with realistic parameters while

conducting experiments in simulation. Our goal is to find out if
it is worth to use PID or some of its terms is enough to get a

stable system. According to the preliminary results of the

experiments, the statistical difference of results shows that PID

is better than both P and PD for the given model.

Keywords— PID, PD, PSO, optimization, control systems,

natural computing, evolutionary computing, quadrotor, flying

robot.

I. INTRODUCTION

The main body of a quadrotor mostly includes a power
source, 4 motors, 4 motor controllers, 4 propellers, and 1

control card which includes other necessary modules like
microcontroller, wireless module, GPS, etc. Using

quadrotors in relat ively critical missions like transportation

or surveillance requires them to be reliable. The first step to
ensuring such reliability is applying a control system to

correct the attitude (roll, pitch, yaw) of the quadrotor without
continuous human interaction. However, the parameters of

the control system is very important since they directly affect
the stability of the quadrotor. To provide the necessary

calculations to maintain the system as stable as poss ible,
there are proposed control system algorithms such as [1-7].

We are focusing the control system algorithm proposed in

[7] which is called Proportional Integral Derivative (PID).

PID is a control system algorithm which consists of 3

terms. The first term is the proportional (P), the second is the
integral (I) and the third is the derivative (D). Proportional

term provides the most basic error correction feature which
outputs some proportion of the calculated error of the

system. Integral term sums up the error from the start time

until now and outputs some proportion of that sum. Finally,
derivative term returns a proportion of the difference

between current and previous errors of the system. After
getting the results of these terms, all of them sum up to a

single number and this number is fed to the actuators of the
system. The important thing is how much of the output of

these terms should be used to correct the system without

overwhelm the actuators and the system.

In our work, we will compare P, PD and PID in terms of

time to tune and stability. While tuning these gains Particle
Swarm Optimization (PSO) is used. PSO should be a very

suitable candidate for such a mission because of its
simplicity and relatively low computational costs.

II. BACKGROUND

A. Proportional Integral Derivative

One of the most popular control loop feedback

mechanism is the PID controller [8]. PID algorithm works

with two essential inputs. One is the feedback from the
overall system response and the other one is the set point

(desired) value. These inputs are used later to calculate the
system error. A generalized system diagram with a feedback

control algorithm is given in Fig. 1.

The output of the control algorithm feeds the actuators of

the quadrotor model. In our case, the actuators are the motors
which provide the necessary angular velocity to the

propellers to change the quadrotor's stance.

The overall PID controller consists of 3 terms as shown
in (1).

𝑢(𝑡) = 𝑃(𝑡) + 𝐼(𝑡) + 𝐷(𝑡) (1)

𝑃(𝑡) is the proportional (P) term, 𝐼(𝑡) is the integral (I)
term and 𝐷(𝑡) is the derivative (D) term. There is an

important reason that why (1) consists of 3 terms. That

reason is a control system which is made up of only P cannot
reach a static oscillation free steady state. To increase the

success of whole controller and cancel out all or most of the

static steady state oscillations I and D terms are introduced in
addition to the P term.

In (1), all terms of PID are in time domain and depends
on system error. The system error is defined as the difference

between set-point and the measured process variable (actual
sensor value) as shown in (2).

𝑒(𝑡) = 𝑦𝑠𝑝
(𝑡) − 𝑦(𝑡) (2)

𝑦𝑠𝑝 (𝑡) is set-point value and 𝑦(𝑡) is sensor value or

current attitude of the quadrotor. Set-point is the attitude
value which we desire how the quadrotor is positioned in 3-

dimensional space.

The first term of PID is the P term which is shown in (3).

𝑃(𝑡) = 𝐾𝑃 ∗ 𝑒(𝑡) (3)

The proportion gain is called 𝐾𝑃 . This constant needs to

be tuned to get proper reactions from the system. 𝑒(𝑡) is the

system error. Overall, the proportional term is the system
error multiplied with a gain (proportion).

The next term is called I term. It is the integral of the
system error as shown in (4).

𝐼(𝑡) = 𝐾𝐼 ∗ ∫ 𝑒(𝑡) 𝑑𝑡
𝑡𝑓

𝑡0

 (4)

The effect of the I term to a system is reducing the steady

state error [8]. The I term provides output even the system is
currently stable at steady state because of its dependency on

the past. The gain of the I term is held in a constant called 𝐾𝐼 .

This constant also needs to be tuned if the I term is used in
the controller.

The final term of PID is the D term. It is shown in (5).

𝐷(𝑡) = 𝐾𝐷 ∗
𝑑𝑒(𝑡)

𝑑𝑡
 (5)

The D term is the some proportion of rate of change of

the system error. In other words derivative of the error,
multiplied with a constant 𝐾𝐷 . This constant is the gain of the

D term. The effect of the D term to a system is observed as a
damping factor. It delays the effect of the P term. As a result,

the system is damped and always converges to a steady state

when the 𝐾𝑃 and 𝐾𝐷 terms are positive numbers [8].
However, there will be some side effects such as overdamp

or underdamp, if the constants of the terms are not adjusted

carefully. Both overdamp and underdamp increase the
system error until the system reaches to steady state.

Overdamp occurs if the gain of derivative term is relatively
high with respect to the gain of the P term. In that state, the

system will converge very slowly. On the other hand, if the
constant of the D term is low and the constant of the

proportional term is relat ively high, then the system is under-

damped. As a result, the system will again converges lately
to an oscillation free steady state.

In this paper, we use some combination of terms of the
PID controller such as P, PD, and PID as our controller. To

tune the gains we proposed a natural computational method
called Particle Swarm Optimization (PSO).

B. Particle Swarm Optimization

Eberhart and Kennedy proposed Particle Swarm

Optimization (PSO) [10]. As the name suggests, there are
particles which have positions and velocities. The search

process in PSO is made by moving the particles in the search

space. Positions of particles are mapped to the solutions of
the problem and modified by velocity of the particle. The

velocities of particles are calculated as shown in (6) [11].

𝑣𝑖𝑑
(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖𝑑

(𝑡)

+ (𝑐1 ∗ 𝑟𝑎𝑛𝑑 (0, 1)

∗ (𝑝𝐵𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
(𝑡)))

+ (𝑐2 ∗ 𝑟𝑎𝑛𝑑 (0, 1)

∗ (𝑔𝐵𝑒𝑠𝑡𝑖𝑑 − 𝑥 𝑖𝑑
(𝑡)))

(6)

𝑣𝑖𝑑 (𝑡 + 1) is the velocity of the ith particle in dimension

d at time 𝑡 + 1. w is called inertial weight and it is the weight
of the previous velocity to the current velocity. 𝑐1 and 𝑐2 are

cognition and social weights of the particles’ velocity. 𝑐1 is

the weight of personal best and 𝑐2 is the weight of global

best. 𝑟𝑎𝑛𝑑 (0, 1) function generates a random number
between 0 and 1. x is the position of ith particle in dimension

d. pBest is the personal best position of that particles

obtained so far. gBest is the best position that is found in the
swarm so far.

Positions of particles are are evaluated by a function
called fitness function to decide whether or not the found

solution is acceptable.

A group of particle which have same fitness function is

called swarm. Swarms have a me mory called global best

(gBest). This is the index of a particle which gives the best
solution obtained so far in the swarm.

After the velocities are calculated, positions of particles
are updated as shown in (7).

𝑥 𝑖𝑑
(𝑡 + 1) = 𝑥 𝑖𝑑 (𝑡) + 𝑣𝑖𝑑 (𝑡) (7)

𝑣𝑖𝑑 (𝑡) is the velocity of particle i in dimension d at time
t. 𝑥 𝑖𝑑 (𝑡) is the position of particle i in dimension d at time t.

𝑥 𝑖𝑑 (𝑡 + 1) is the position of particle i in dimension d at time

𝑡 + 1.

A pseudo-code is given in Algorithm 1 which intercepts

the previously defined equations and methods.

The algorithm starts with initializing particles. The

initialization process assigns random velocities and positions
to all of the particles in that swarm. Then a loop is defined

which repeats until max iteration count is reached. The
iteration count of the loop specifies the stop condition of the

algorithm. After that, positions of the all particles are

evaluated to decide the personal bests and global best. Then,
according to personal bests and the global best the new

velocities and positions are recalculated with some
randomness (𝑟1 , 𝑟2) in them. Then the whole process is

repeated again until the specified iteration count is reached.

III. QUADROTOR MODEL

To apply the previously mentioned control system and

keep track of the behavior of the quadrotor, it is necessary to
derive a dynamic model. In this work, we developed our

quadrotor model based on the model proposed in [5]. To
implement the model in MATLAB, we modified the

implementation presented in [12] to suit our objectives. The
dynamic model in [5] is summarized as follows:

𝑥̈ =
1

𝑚
(cos 𝜙 sin 𝜃 cos 𝜓 + sin 𝜙 sin 𝜓)𝑢1 −

𝐾1𝑥̇

𝑚
 (8)

Algorithm 1 Pseudocode for Particle Swarm Optimization

P ← InitalizeParticles()

for i←0 to maxIterations do

 for all p ∈ P do

 fp ← fitness(p)

 if fp is better than fitness(pBest) then
 pbest ← p

 end if

 end for

 gBest ← best p in P

 for all p ∈ P do

 v ← w* v + 𝑐1 * 𝑟1 * (pBest – p) + 𝑐2 * 𝑟2 * (gBest - p)

 p ← p + v

 end for

end for

Fig. 1. Block diagram of a feedback controlled process.

�̈� =
1

𝑚
(cos 𝜙 sin 𝜃 sin 𝜓 + sin 𝜙 cos 𝜓)𝑢1 −

𝐾2�̇�

𝑚
 (9)

�̈� =
1

𝑚
(cos 𝜙 cos 𝜃)𝑢1 − 𝑔 −

𝐾3�̇�

𝑚
 (10)

�̈� = �̇��̇�
𝐼𝑦 − 𝐼𝑧

𝐼𝑥

+
𝐽𝑟

𝐼𝑥

�̇�Ω 𝑟 +
𝑙

𝐼𝑥

𝑢2 −
𝐾4𝑙

𝐼𝑥

�̇� (11)

�̈� = �̇��̇�
𝐼𝑧 − 𝐼𝑥

𝐼𝑦

+
𝐽𝑟

𝐼𝑦

�̇�Ω 𝑟 +
𝑙

𝐼𝑦

𝑢3 −
𝐾5𝑙

𝐼𝑦

�̇� (12)

�̈� = �̇��̇�
𝐼𝑥 − 𝐼𝑦

𝐼𝑧

+
𝑙

𝐼𝑧

𝑢4 −
𝐾6

𝐼𝑧

�̇� (13)

The Euler angles [𝜙, 𝜃, 𝜓] are the roll, p itch and yaw

respectively. 𝐾𝑖 are the drag coefficients. 𝑢1 is the total force

applied and calculated as in (14).

𝑢1 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 (14)

Ω𝑟 is the angular velocity of the whole quadrotor body

and can be calculated from the individual angular velocit ies

of the propellers as shown in (15).

Ω𝑟 = Ω1 − Ω2 + Ω3 − Ω4 (15)

Ω𝑖 is the angular velocity of the propeller i. The rolling,

pitching, and yawing forces are defined as follows

respectively:

𝑢2 = (−𝐹2 + 𝐹4) (16)

𝑢3 = (−𝐹1 + 𝐹3) (17)

𝑢4 = 𝑑(−𝐹1 + 𝐹2 + 𝐹3 + 𝐹4)/𝑏 (18)

The constants presented in Table I are gathered from
[12], [13].

There are four degrees of freedom (DoF) in our case.
They are:

1. Roll (𝜙)

2. Pitch (𝜃)

3. Yaw (𝜓)

4. Altitude (z)

As a result, since each control algorithm has its own gain,

there are 4 different control systems.

IV. AN IMPLEMENTATION OF PSO FOR TUNING GAIN OF THE

TERMS OF PID

In the tuning problem, decision variables are the gains of
the controller terms. In PSO terminology, the array of gains

is called the position vector of a particle. The position

vectors of a particle can be shown as (19), (20), and (21) for
a P, PD, and PID controller respectively.

𝑃 = [𝐾𝑃
1 𝐾𝑃

2 𝐾𝑃
3 𝐾𝑃

4] (19)

𝑃 = [𝐾𝑃
1 𝐾𝐷

1 𝐾𝑃
2 𝐾𝐷

2 𝐾𝑃
3 𝐾𝐷

3 𝐾𝑃
4 𝐾𝐷

4] (20)

𝑃 = [𝐾𝑃
1 𝐾𝐼

1 𝐾𝐷
1 𝐾𝑃

2 𝐾𝐼
2 𝐾𝐷

2 𝐾𝑃
3 𝐾𝐼

3 𝐾𝐷
3 𝐾𝑃

4 𝐾𝐼
4 𝐾𝐷

4] (21)

Superscripts denote the controller index. For example, 𝐾𝑃
1

means the proportional gain of the roll controller.

To evaluate these positions a fitness function is needed.
The fitness function is sum of mean absolute errors of each

DoF for some interval of time. For this problem, fitness
function (in other words cost function) is defined as in (22)

[13].

𝑆𝐸 = ∑ ∫ 𝑒𝑖
2(𝑡) 𝑑𝑡

𝑡𝑓

𝑡0

4

𝑖=1

 (22)

𝑒𝑖 (𝑡) is the system error as defined previously in (2).

Index i is the controller index from 1 to 4 since we have 4

degrees of freedom (DoF).

The flow of the algorithm is shown in Fig. 2. Flow starts

from the PSO by generating random positions and velocities
for particles. The position of the best particle is given to the

TABLE I. QUADROTOR MODEL PARAMETERS.

Variable Value Units

𝑚 2.0 kg

𝐼𝑥 = 𝐼𝑦 1.25 Ns
2
/rad

𝐼𝑧 2.2 Ns
2
/rad

𝐾1 = 𝐾2 = 𝐾3 0.01 Ns/m

𝐾4 = 𝐾5 = 𝐾6 0.012 Ns/m

𝑙 0.20 m

𝐽𝑟 1 Ns
2
/rad

𝑏 2 Ns
2

𝑑 10 N ms
2

𝑔 10 m/s
2

Fig. 2. Tuning flow diagram of the quadrotor controller.

TABLE III. 𝐾𝑃 VALUES THAT ARE OBTAINED FROM THE DEFAULT

HYPER-PARAMETER VALUES AT T ABLE II.

Sln. 𝑲𝑷
𝟏 𝑲𝑷

𝟐 𝑲𝑷
𝟑 𝑲𝑷

𝟒

1 3.88 2.82 0.32 4.57

2 3.86 3.42 2.19 3.80

3 3.15 2.78 0.39 5.24

4 6.98 4.10 0.50 5.63

5 4.20 1.68 0.28 5.07

6 3.71 2.60 2.30 3.79

7 3.78 2.82 2.81 3.78

8 3.83 0.77 1.29 5.11

9 3.36 3.50 0.06 5.34

10 3.34 3.80 0.41 4.51

TABLE II. PSO HYPERPARAMETERS.

Variable Default Value Ranges
Number of particles 10 [5, 10, 15, 20]

𝑐1 2 -

𝑐2 2 -

𝑤 0.9 -

Iteration count 100 -

𝑉𝑚𝑎𝑥 2 -

controller as tuned gains. Then, the quadrotor model is run

for 15 seconds for each gain. Then, the cost is calculated by
using (22). Finally, the whole process is repeated until a stop

condition is satisfied. In our case, the stop condition is
number of iterations.

To compute the results, the hyper-parameter values of the
PSO is chosen by trial and error as Table II.

V. RESULTS & DISCUSSIONS

In order to compare the success of P, PD, and PID terms

as a controller, three separate controller implementations are
made. Each controller implementation is tuned 10 times with

the same hyper-parameter values to see if it is consistent.

After finding the best performing combination of PID terms,
the number of particles are changed within the range that is

given in Table II to see the effect of particle count to the
solution. All tests run in a computer with an Intel i7-7500U

2.90GHz processor and 16GB of RAM.

The PSO algorithm outputs 4, 8, and 12 values which are

the gains of the P, PD, and PID terms respectively. These

values are formed as the vectors in (19), (20), and (21). Then,
we input these vectors into the respected quadrotor control

algorithm. After completing the computations, the quadrotor
model controller outputs the total errors of each DoF

according to (22) and generates a flight trajectory in 4 axes.

The initial conditions are given as follows:

 The initial angles and height: 𝜙 = 0∘ , 𝜃 = 0∘ ,
𝜓 = 0∘, 𝑍 = 0m

 The desired angles and height: 𝜙 = −0.2∘ ,

𝜃 = −0.2∘, 𝜓 = 0∘ , 𝑍 = 5m

 The cost function takes integral from 𝑡0 = 0s to
𝑡𝑓 = 15s with 𝑑𝑡 = 0.01s.

A. Comparison of the P, PD, and PID Controllers

Table III shows the gains found by PSO for a P only

controller with default hyper-parameter values. Fig. 3 shows
the square error (SE) versus the number of iterations for each

individual run. Each value in Table III is given to the

quadrotor model separately as a candidate solution. Using
each candidate solution, the quadrotor model calculates the

respected errors of 4 DoF. This process is repeated for all of
the remaining controllers.

According to the generated flight trajectories, none of the
tuned P only controllers converge. Fig. 6 shows the flight

trajectory of the P only controller with the min imum square

error for a 30 seconds flight. The desired conditions are same
as with the used in tuning process.

Similarly, Table IV shows the gains found by PSO for
PD controller. Again this one is also tuned with default

hyper-parameter values. The desired conditions are same
with the P only experiment. Fig. 4 shows the SE curves and

Fig. 7 shows the flight trajectory of the best one from the

table.

All of the above processes for P and PD controllers are

repeated for the PID controller. SE curves can be seen in Fig.
5 and flight trajectory for a 30 seconds flight is presented in

Fig. 8.

To see which controller setup performs better, mean and

standard deviation (SD) of the errors are calculated at the
bottom of tables. One can be accurately deducted the PID

controller outperforms both P only and PD controller for this

specific model. With this information in mind, PID controller
is used in following tests.

B. Impact of Number of Particles to the Error

We also want to see if the quality of results are changed

or not when we change particle count in the swarm. To
understand the effects of number of particles to the errors got

from the quadrotor model and calculation time, we fixed all
the other hyper-parameter values to default values except

number of particles.

It can be seen that average error of the system is slightly

decreases as the number of particles increases. The increase

in number of particles also increases the calculation time.
However, the decrease in average error is much slower than

the increase in the calculation time.

C. Discussions

The impact of number of particles on the observed total
error is calculated by difference in error divided by

difference in time. The difference in average error is 4.8564

TABLE IV. 𝐾𝑃 AND 𝐾𝐷 VALUES THAT ARE OBTAINED FROM THE

DEFAULT HYPER-PARAMETER VALUES AT T ABLE 2.

Sln. 𝑲𝑷
𝟏 𝑲𝑫

𝟏 𝑲𝑷
𝟐 𝑲𝑫

𝟐 𝑲𝑷
𝟑 𝑲𝑫

𝟑 𝑲𝑷
𝟒 𝑲𝑫

𝟒

1 2.98 5.91 5.46 1.65 0.76 3.97 8.09 1.71

2 2.69 1.01 1.25 0.50 1.12 0.97 8.28 1.74

3 3.42 2.76 4.85 6.13 3.98 5.80 8.17 1.63

4 3.46 0.72 0.55 0.72 1.16 4.13 0.04 2.59

5 1.70 0.75 0.93 0.98 0.60 0.61 0.92 2.68

6 5.36 2.03 1.69 7.20 3.42 8.12 7.87 1.48

7 3.16 2.09 1.87 1.52 1.79 0.86 8.03 1.73
8 1.20 1.78 3.84 0.73 2.21 0.19 7.39 1.94

9 3.43 0.79 2.40 2.42 1.11 2.27 8.11 1.74

10 1.85 1.56 3.16 2.71 2.41 0.40 7.68 1.92

TABLE V. 𝐾𝑃, 𝐾𝐼, AND 𝐾𝐷 VALUES THAT ARE OBTAINED FROM THE DEFAULT HYPER-PARAMETER VALUES AT T ABLE 2.

Sln. 𝑲𝑷
𝟏 𝑲𝑰

𝟏 𝑲𝑫
𝟏 𝑲𝑷

𝟐 𝑲𝑰
𝟐 𝑲𝑫

𝟐 𝑲𝑷
𝟑 𝑲𝑰

𝟑 𝑲𝑫
𝟑 𝑲𝑷

𝟒 𝑲𝑰
𝟒 𝑲𝑫

𝟒

1 2.72 0.05 3.21 0.44 3.55 3.16 2.57 1.20 0.77 3.85 3.51 1.71

2 1.44 0.81 1.24 3.66 1.86 2.33 3.21 3.52 2.03 3.90 3.46 1.79

3 4.01 1.76 3.22 2.24 1.52 1.14 1.93 0.42 1.58 3.21 3.10 1.68

4 0.65 3.52 3.66 0.64 1.33 1.64 2.71 3.78 2.46 4.03 3.84 1.82

5 1.39 3.59 3.33 1.12 1.67 1.77 2.33 0.78 1.94 3.51 3.37 1.78

6 1.74 1.17 1.86 3.59 4.26 1.52 1.43 0.73 4.87 3.26 3.37 1.83

7 5.07 2.47 2.14 2.57 3.62 1.32 3.55 1.50 2.40 3.85 3.91 1.88

8 0.75 0.59 4.24 1.96 4.05 3.37 3.37 0.05 3.29 4.53 3.58 1.76

9 3.83 3.75 3.18 0.27 0.47 1.17 2.02 0.24 1.47 3.96 2.79 1.60

10 0.54 0.34 2.45 2.50 1.19 2.78 0.67 4.42 2.35 4.51 3.91 1.86

Fig. 3. Square error curves of each individual run of P only

controller.

Fig. 4. Square error curves of each individual run of PD controller.

Fig. 5. Square error curves of each individual run of PID controller.

Fig. 6. Flight trajectory of the best found gains with P only controller
for 30 seconds.

Fig. 8. Flight trajectory of the best found gains with PID controller

for 30 seconds.

Fig. 7. Flight trajectory of the best found gains with PD controller for

30 seconds.

between 5 particles and 20 particles. On the other hand,
difference in time is 78.6589 seconds. We have an error to

time ratio of 0.0279. The decrease in average error is not
worth to the increase in time. However, by looking the

decrease in standard deviation we can say that as the particle

count increases the accuracy of the results are increasing.

VI. CONCLUSIONS & FUTURE WORKS

In this preliminary work, we analyzed the impact of the

P, PD, and PID controllers on the quadrotor stability. We
used a PSO algorithm to optimize the gains of the P, PD, and

PID controllers. We found that PID controller gives better

results compared to the results provided by the P and PD

TABLE VI. SQUARED ERRORS OF T HE MODEL WITH A P ONLY

CONTROLLER

Sln. φ

Error

θ

Error
ψ

Error
Z

Error
Σ

Error
1 0.58 0.49 6.32 118.27 125.66

2 0.76 0.61 0.50 136.13 138.00

3 1.17 0.90 6.85 113.24 122.15

4 0.71 1.60 12.59 126.02 140.92
5 1.37 2.80 12.38 116.63 133.18

6 0.32 0.50 0.06 145.60 146.49

7 0.37 0.52 0.06 151.43 152.39

8 1.38 1.87 5.09 127.37 135.72

9 1.35 1.30 5.35 104.71 112.71

10 0.72 0.30 3.16 121.57 125.76

Mean 0.88 1.09 5.24 126.10 133.30

SD 0.39 0.76 4.35 13.85 11.35

TABLE VII. SQUARED ERRORS OF T HE MODEL WITH A PD

CONTROLLER

Sln. φ

Error

θ

Error

ψ

Error

Z

Error

Σ

Error
1 0.00 0.03 0.10 35.92 36.05

2 0.06 0.03 0.09 35.24 35.41

3 0.02 0.00 0.00 35.40 35.43

4 0.03 0.02 0.01 306.70 306.77

5 0.03 0.04 0.01 309.90 309.98

6 0.02 0.00 0.01 36.44 36.47

7 0.02 0.01 0.03 35.68 35.75

8 0.03 0.10 0.25 37.37 37.75

9 0.04 0.01 0.01 35.50 35.56

10 0.01 0.02 0.05 36.70 36.79

Mean 0.03 0.03 0.06 90.49 90.59

SD 0.01 0.03 0.07 108.91 108.89

TABLE VIII. SQUARED ERRORS OF T HE MODEL WITH A PID

CONTROLLER

Sln. φ

Error

θ

Error
ψ

Error
Z

Error
Σ

Error
1 0.00 0.03 0.00 8.24 8.27

2 0.01 0.01 0.00 7.85 7.87

3 0.01 0.03 0.01 8.40 8.44

4 0.15 0.03 0.02 8.42 8.62

5 0.06 0.02 0.03 8.44 8.55

6 0.02 0.02 0.00 7.67 7.71

7 0.01 0.03 0.00 7.30 7.34

8 0.01 0.01 0.00 8.26 8.29

9 0.01 0.04 0.00 8.86 8.90

10 0.01 0.01 0.01 7.73 7.75

Mean 0.03 0.02 0.01 8.12 8.18

SD 0.04 0.01 0.01 0.44 0.46

TABLE IX. AVERAGES, STANDARD DEVIATIONS OF ERRORS FOR

DIFFERENT PARTICLE COUNTS. THE COMPUTATION TIMES ARE ALSO

GIVEN.

 5 Part. 10 Part. 15 Part. 20 Part.
Mean 11.55 9.90 7.68 7.64

SD 8.45 4.15 0.62 0.51

Time (s) 144.67 280.99 428.51 571.57

controllers. In fact, P only controller did not converge at any

point in time at all. The most affected DoF was the altitude
and the least affected one was the yaw.

In future, we are planning shortening the computation
time so that it will be an acceptable solution to an online

tuning application.

REFERENCES

[1] M. Santos, V. Lopez, and F. Morata, “Intelligent fuzzy controller of a
quadrotor,” in 2010 IEEE International Conference on Intelligent
Systems and Knowledge Engineering, Hangzhou, China, 2010, pp.
141–146.

[2] E. Altug, J. P. Ostrowski, and R. Mahony, “Control of a quadrotor
helicopter using visual feedback,” in Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat.
No.02CH37292), Washington, DC, USA, 2002, vol. 1, pp. 72–77.

[3] T. Madani and A. Benallegue, “Backstepping Control for a Quadrotor
Helicopter,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, 2006, pp. 3255–3260.

[4] R. Xu and U. Ozguner, “Sliding Mode Control of a Quadrotor
Helicopter,” in Proceedings of the 45th IEEE Conference on Decision
and Control, San Diego, CA, USA, 2006, pp. 4957–4962.

[5] J.-J. Xiong and E.-H. Zheng, “Position and attitude tracking control
for a quadrotor UAV,” ISA Transactions, vol. 53, no. 3, pp. 725–731,
May 2014.

[6] H. A. Rozi, E. Susanto, and Ig. P. Dwibawa, “Quadrotor model with
proportional derivative controller,” in 2017 International Conference
on Control, Electronics, Renewable Energy and Communications
(ICCREC), Yogyakarta, 2017, pp. 241–246.

[7] A. L. Salih, M. Moghavvemi, H. A. F. Mohamed, and K. S. Gaeid,
“Modelling and PID controller design for a quadrotor unmanned air
vehicle,” in 2010 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2010,
pp. 1–5.

[8] K. J. Åström, T. Hägglund, and K. J. Åström, PID controllers, 2nd
ed. Research Triangle Park, N.C: International Society for
Measurement and Control, 1995.

[9] “Manual tune procedures products: Pid controllers,” Red Lion
Controls, Tech. Rep.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95 - International Conference on Neural
Networks, Perth, WA, Australia, 1995, vol. 4, pp. 1942–1948.

[11] Eberhart and Yuhui Shi, “Particle swarm optimization: developments,
applications and resources,” in Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, South
Korea, 2001, vol. 1, pp. 81–86.

[12] R. De Nardi, “The qrsim quadrotors simulator,” RN, vol. 13, no. 08,
p. 08, 2013.

[13] H. Boubertakh, S. Bencharef, and S. Labiod, “PSO-based PID control
design for the stabilization of a quadrotor,” in 3rd International
Conference on Systems and Control, ALGIERS, Algeria, 2013, pp.
514–517.

